Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 204(4): 222, 2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35344106

RESUMO

Here, the taxonomical composition and seasonal dynamics of airborne microbial communities were described in the urban city of Lanzhou, Northwest China. Year-long samples were studied in two filter membranes (Quartz and PTFE). Higher microbial loads were reported in the PTFE than in the quartz filter. Onefold decrease was reported in bacterial loads in spring and summer than winter and autumn for both filters. The fungal loadings were lowest during winter and highest during autumn, followed by summer. The microbial communities included Actinobacteria and Proteobacteria, Ascomycota, and Basidiomycota as major components. Maximum abundance of the members from Gammaproteobacteria, Coriobacteria and Clostridia were studied in all seasons on PTFE membrane, followed by, Erysipelotrichia, Negativicutes and Fusobacteria. Members of Actinobacteria and Bacilli showed higher abundance in spring and winter, with a small proportion during autumn. Members of Clostridia, Gammaproteobacteria, Bacilli, and Actinobacteria showed maximum abundance on the quartz filter in all the seasons. Similarly, on the PTFE, fungi including Dothideomycetes and Agaricomycetes were dominant, followed by Saccharomycetes during summer and winter. The result showed that PM2.5, SO42-, NO2-, Na+, EC, and OC are important environmental parameters influencing the seasonal microbial community. However, the relation of the microbiome with the environment cannot be confidently defined because the environmental factors are changeable and yet interrelated.


Assuntos
Bactérias , Microbiota , Bactérias/genética , Fungos/genética , Proteobactérias/genética , Estações do Ano
2.
Curr Microbiol ; 74(10): 1226-1236, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28733909

RESUMO

Filamentous fungi play a dynamic role in health and the environment. In addition, their unique and complex hyphal structures are involved in their morphogenesis, integrity, synthesis, and degradation, according to environmental and physiological conditions and resource availability. However, in biotechnology, it has a great value in the production of enzymes, pharmaceuticals, and food ingredients. The beginning of nomenclature of overall fungi started in early 1990 after which the categorization, interior and exterior mechanism, function, molecular and genetics study took pace. This mini-review has emphasized some of the important aspects of filamentous fungi, their pattern of life cycle, history, and development of different strategic methods applied to exploit this unique organism. New trends and concepts that have been applied to overcome obstacle because of their basic structure related to genomics and systems biology has been presented. Furthermore, the future aspects and challenges that need to be deciphered to get a bigger and better picture of filamentous fungi have been discussed.


Assuntos
Fungos/genética , Fungos/metabolismo , Genoma Fúngico , Genômica , Proteômica , Fungos/crescimento & desenvolvimento , Genômica/métodos , Estágios do Ciclo de Vida , Proteômica/métodos
3.
J Proteome Res ; 15(12): 4387-4402, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27618962

RESUMO

Lignocelluloses contained in animal forage cannot be digested by pigs or poultry with 100% efficiency. On contrary, Aspergillus fumigatus, a saprophytic filamentous fungus, is known to harbor 263 glycoside hydrolase encoding genes, suggesting that A. fumigatus is an efficient lignocellulose degrader. Hence the present study uses corn, wheat, or soybean as a sole carbon source to culture A. fumigatus under animal physiological condition to understand how cellulolytic enzymes work together to achieve an efficient degradation of lignocellulose. Our results showed that A. fumigatus produced different sets of enzymes to degrade lignocelluloses derived from corn, wheat, or soybean cell wall. In addition, the cellulolytic enzymes produced by A. fumigatus were stable under acidic condition or at higher temperatures. Using isobaric tags for a relative and absolute quantification (iTRAQ) approach, a total of ∼600 extracellular proteins were identified and quantified, in which ∼50 proteins were involved in lignocellulolysis, including cellulases, hemicellulases, lignin-degrading enzymes, and some hypothetical proteins. Data are available via ProteomeXchange with identifier PXD004670. On the basis of quantitative iTRAQ results, 14 genes were selected for further confirmation by RT-PCR. Taken together, our results indicated that the expression and regulation of lignocellulolytic proteins in the secretome of A. fumigatus were dependent on both nature and complexity of cellulose, thus suggesting that a different enzyme system is required for degradation of different lignocelluloses derived from plant cells. Although A. fumigatus is a pathogenic fungus and cannot be directly used as an enzyme source, as an efficient lignocellulose degrader its strategy to synergistically degrade various lignocelluloses with different enzymes can be used to design enzyme combination for optimal digestion and absorption of corn, wheat, or soybean that are used as forage of pig and poultry.


Assuntos
Ração Animal , Aspergillus fumigatus/enzimologia , Lignina/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glycine max/metabolismo , Triticum/metabolismo , Zea mays/metabolismo
4.
Fundam Res ; 2(2): 218-221, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38933152

RESUMO

The airborne microbiome is one of the relevant topics in ecology, biogeochemistry, environment, and human health. Bioaerosols are ubiquitous air pollutants that play a vital role in the linking of the ecosystem with the biosphere, atmosphere, climate, and public health. However, the sources, abundance, composition, properties, and atmospheric transport mechanisms of bioaerosols are not clearly understood. To screen the effects of climate change on aerosol microbial composition and its consequences for human health, it is first essential to develop standards that recognize the existing microbial components and how they vary naturally. Bioaerosol particles can be considered an information-rich unit comprising diverse cellular and protein materials emitted by humans, animals, and plants. Hence, no single standard technique can satisfactorily extract the required information about bioaerosols. To account for these issues, metagenomics, mass spectrometry, and biological and chemical analyses can be combined with climatic studies to understand the physical and biological relationships among bioaerosols. This can be achieved by strengthening interdisciplinary teamwork in biology, chemistry, earth science, and life sciences and by sharing knowledge and expertise globally. Thus, the coupled use of various advanced analytical approaches is the ultimate key to opening up the biological treasure that lies in the environment.

5.
Sci Total Environ ; 697: 134150, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32380618

RESUMO

Mercury (Hg) is one of the most toxic heavy metals, and its cycle is mainly controlled by oxidation-reduction reactions carried out by photochemical or microbial process under suitable conditions. The deposition and accumulation of methylmercury (MeHg) in various ecosystems, including the cryospheric components such as snow, meltwater, glaciers, and ice sheet, and subsequently in the food chain pose serious health concerns for living beings. Unlike the abundance of knowledge about the processes of MeHg production over land and oceans, little is known about the sources and production/degradation rate of MeHg in cryosphere systems. In addition, processes controlling the concentration of Hg and MeHg in the cryosphere remains poorly understood, and filling this scientific gap has been challenging. Therefore, it is essential to study and review the deposition and accumulation by biological, physical, and chemical mechanisms involved in Hg methylation in the cryosphere. This review attempts to address knowledge gaps in understanding processes, especially biotic and abiotic, applicable for Hg methylation in the cryosphere. First, we focus on the variability in Hg concentration and mechanisms of Hg methylation, including physical, chemical, microbial, and biological processes, and transportation in the cryosphere. Then, we elaborate on the mechanism of redox reactions and biotic and abiotic factors controlling Hg methylation and biogeochemistry of Hg in the cryosphere. We also present possible mechanisms of Hg methylation with an emphasis on microbial transformation and molecular function to understand variability in Hg concentration in the cryosphere. Recent advancements in the genetic and physicochemical mechanisms of Hg methylation are also presented. Finally, we summarize and propose a method to study the unsolved issues of Hg methylation in the cryosphere.


Assuntos
Camada de Gelo/química , Mercúrio/química , Compostos de Metilmercúrio/química , Neve/química , Poluentes Químicos da Água/análise , Ecossistema , Cadeia Alimentar , Metilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA