Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39007978

RESUMO

Ranitidine, a competitive inhibitor of histamine H2 receptors, has been identified as an emerging micropollutant in water and wastewater, raising concerns about its potential impact on the environment and human health. This study aims to address this issue by developing an effective removal strategy using two types of layered double hydroxide (LDH) catalysts (i.e., CoFeLDH and CoCuLDH). Characterization results show that CoFeLDH catalyst has superior catalytic properties due to its stronger chemical bond compared to CoCuLDH. The degradation experiment shows that 100% degradation of ranitidine could be achieved within 20 min using 25 mg/L of CoFeLDH and 20 mg/L of peroxymonosulfate (PMS). On the other hand, CoCuLDH was less effective, achieving only 70% degradation after 60 min at a similar dosage. The degradation rate constant of CoFeLDH was 10 times higher than the rate constant of CoCuLDH at different pH range. Positive zeta potential of CoFeLDH made it superior over CoCuLDH regarding catalytic oxidation of PMS. The catalytic degradation mechanism shows that sulfate radicals played a more dominant role than hydroxyl radicals in the case of LDH catalysts. Also, CoFeLDH demonstrated a stronger radical pathway than CoCuLDH. XPS analysis of CoFeLDH revealed the cation percentages at different phases and proved the claim of being reusable even after 8 cycles. Overall, the findings suggest that CoFeLDH/PMS system proves to be a suitable choice for attaining high degradation efficiency and good stability in the remediation of ranitidine in wastewater.

2.
Chemosphere ; 359: 142318, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735495

RESUMO

The effective removal of micropollutants by water treatment technologies remains a significant challenge. Herein, we develop a CoFe layered double hydroxide (CoFeLDH) catalytic membrane for peroxymonosulfate (PMS) activation to achieve efficient micropollutant removal with improved mass transfer rate and reaction kinetics. This study found that the CoFeLDH membrane/PMS system achieved an impressive above 98% degradation of the probe chemical ranitidine at 0.1 mM of PMS including five more micropollutants (Sulfamethoxazole, Ciprofloxacin, Carbamazepine, Acetaminophen and Bisphenol A) at satisfactory level (above 80%). Moreover, significant improvements in water flux and antifouling properties were observed, marking the membrane as a specific advancement in the removal of membrane fouling in water purification technology. The membrane demonstrated consistent degradation efficiency for several micropollutants and across a range of pH (4-9) as well as different anionic environments, thereby showing it suitability for scale-up application. The key role of reactive species such as SO4•-, and O2• - radicals in the degradation process was elucidated. This is followed by the confirmation of the occurrence of redox cycling between Co and Fe, and the presence of CoOH+ that promotes PMS activation. Over the ten cycles, the membrane could be operated with a flux recovery of up to 99.8% and maintained efficient performance over 24 h continuous operation. Finally, the efficiency in degrading micropollutants, coupled with reduced metal leaching, makes the CoFeLDH membrane as a promising technology for application in water treatment.


Assuntos
Hidróxidos , Membranas Artificiais , Poluentes Químicos da Água , Purificação da Água , Purificação da Água/métodos , Poluentes Químicos da Água/química , Hidróxidos/química , Fenóis/química , Peróxidos/química , Compostos Benzidrílicos/química , Carbamazepina/química , Ranitidina/química , Acetaminofen/química , Sulfametoxazol/química , Ciprofloxacina/química , Catálise , Cobalto/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA