Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 270: 110792, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32721288

RESUMO

A common objective of watershed management programs is to secure water supply, especially during the dry season. To develop such programs in contexts of low data and resource availability, program managers need tools to understand the effect of landscape management on the seasonal water balance. However, the performance of simple, parsimonious models is poorly understood. Here, we examine the behavior of a geospatial tool, developed to map monthly water budgets and baseflow contributions and forming part of the InVEST (integrated valuation of ecosystem services and trade-offs) software suite. The model uses monthly climate, topography, and land-use data to compute spatial indices of groundwater recharge, baseflow, and quickflow. We illustrate the model application in two large basins in Peru and Myanmar, where we compare results with observed data and alternative hydrologic models. We show that the spatial distribution of baseflow contributions correlated well with an established model in the Peruvian basin (r2 = 0.81 at the parcel scale). In Myanmar, the model shows an overall satisfactory performance for representing month to month variation (Nash-Sutcliffe-Efficiency 0.6-0.8); however, errors are scale dependent highlighting limitations in representing processes in large basins. Our study highlights modeling challenges, in particular trade-offs between model complexity and accuracy, and illustrates the role that parsimonious models can play to support watershed management programs.


Assuntos
Ecossistema , Água , Mianmar , Peru , Estações do Ano
2.
Proc Natl Acad Sci U S A ; 112(24): 7402-7, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26082547

RESUMO

The agricultural expansion and intensification required to meet growing food and agri-based product demand present important challenges to future levels and management of biodiversity and ecosystem services. Influential actors such as corporations, governments, and multilateral organizations have made commitments to meeting future agricultural demand sustainably and preserving critical ecosystems. Current approaches to predicting the impacts of agricultural expansion involve calculation of total land conversion and assessment of the impacts on biodiversity or ecosystem services on a per-area basis, generally assuming a linear relationship between impact and land area. However, the impacts of continuing land development are often not linear and can vary considerably with spatial configuration. We demonstrate what could be gained by spatially explicit analysis of agricultural expansion at a large scale compared with the simple measure of total area converted, with a focus on the impacts on biodiversity and carbon storage. Using simple modeling approaches for two regions of Brazil, we find that for the same amount of land conversion, the declines in biodiversity and carbon storage can vary two- to fourfold depending on the spatial pattern of conversion. Impacts increase most rapidly in the earliest stages of agricultural expansion and are more pronounced in scenarios where conversion occurs in forest interiors compared with expansion into forests from their edges. This study reveals the importance of spatially explicit information in the assessment of land-use change impacts and for future land management and conservation.


Assuntos
Agricultura , Biodiversidade , Conservação dos Recursos Naturais/métodos , Brasil , Sequestro de Carbono , Ecossistema , Meio Ambiente , Modelos Teóricos
3.
Nat Commun ; 15(1): 261, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38199986

RESUMO

Meeting global commitments to conservation, climate, and sustainable development requires consideration of synergies and tradeoffs among targets. We evaluate the spatial congruence of ecosystems providing globally high levels of nature's contributions to people, biodiversity, and areas with high development potential across several sectors. We find that conserving approximately half of global land area through protection or sustainable management could provide 90% of the current levels of ten of nature's contributions to people and meet minimum representation targets for 26,709 terrestrial vertebrate species. This finding supports recent commitments by national governments under the Global Biodiversity Framework to conserve at least 30% of global lands and waters, and proposals to conserve half of the Earth. More than one-third of areas required for conserving nature's contributions to people and species are also highly suitable for agriculture, renewable energy, oil and gas, mining, or urban expansion. This indicates potential conflicts among conservation, climate and development goals.


Assuntos
Ecossistema , Planetas , Humanos , Biodiversidade , Agricultura , Clima
4.
Nat Ecol Evol ; 7(1): 51-61, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36443466

RESUMO

Sustaining the organisms, ecosystems and processes that underpin human wellbeing is necessary to achieve sustainable development. Here we define critical natural assets as the natural and semi-natural ecosystems that provide 90% of the total current magnitude of 14 types of nature's contributions to people (NCP), and we map the global locations of these critical natural assets at 2 km resolution. Critical natural assets for maintaining local-scale NCP (12 of the 14 NCP) account for 30% of total global land area and 24% of national territorial waters, while 44% of land area is required to also maintain two global-scale NCP (carbon storage and moisture recycling). These areas overlap substantially with cultural diversity (areas containing 96% of global languages) and biodiversity (covering area requirements for 73% of birds and 66% of mammals). At least 87% of the world's population live in the areas benefitting from critical natural assets for local-scale NCP, while only 16% live on the lands containing these assets. Many of the NCP mapped here are left out of international agreements focused on conserving species or mitigating climate change, yet this analysis shows that explicitly prioritizing critical natural assets and the NCP they provide could simultaneously advance development, climate and conservation goals.


Assuntos
Ecossistema , Planetas , Humanos , Animais , Conservação dos Recursos Naturais , Biodiversidade , Aves , Mamíferos
5.
Science ; 366(6462): 255-258, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31601772

RESUMO

The magnitude and pace of global change demand rapid assessment of nature and its contributions to people. We present a fine-scale global modeling of current status and future scenarios for several contributions: water quality regulation, coastal risk reduction, and crop pollination. We find that where people's needs for nature are now greatest, nature's ability to meet those needs is declining. Up to 5 billion people face higher water pollution and insufficient pollination for nutrition under future scenarios of land use and climate change, particularly in Africa and South Asia. Hundreds of millions of people face heightened coastal risk across Africa, Eurasia, and the Americas. Continued loss of nature poses severe threats, yet these can be reduced 3- to 10-fold under a sustainable development scenario.


Assuntos
Produtos Agrícolas , Modelos Teóricos , Natureza , Polinização , Qualidade da Água , África , América , Ásia , Mudança Climática , Conservação dos Recursos Naturais , Países em Desenvolvimento , Ecossistema , Meio Ambiente , Europa (Continente) , Humanos , Poluição da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA