Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(5): 1701-1715, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38294051

RESUMO

Leaf gas exchange measurements are an important tool for inferring a plant's photosynthetic biochemistry. In most cases, the responses of photosynthetic CO2 assimilation to variable intercellular CO2 concentrations (A/Ci response curves) are used to model the maximum (potential) rate of carboxylation by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, Vcmax) and the rate of photosynthetic electron transport at a given incident photosynthetically active radiation flux density (PAR; JPAR). The standard Farquhar-von Caemmerer-Berry model is often used with default parameters of Rubisco kinetic values and mesophyll conductance to CO2 (gm) derived from tobacco that may be inapplicable across species. To study the significance of using such parameters for other species, here we measured the temperature responses of key in vitro Rubisco catalytic properties and gm in cotton (Gossypium hirsutum cv. Sicot 71) and derived Vcmax and J2000 (JPAR at 2000 µmol m-2 s-1 PAR) from cotton A/Ci curves incrementally measured at 15°C-40°C using cotton and other species-specific sets of input parameters with our new automated fitting R package 'OptiFitACi'. Notably, parameterisation by a set of tobacco parameters produced unrealistic J2000:Vcmax ratio of <1 at 25°C, two- to three-fold higher estimates of Vcmax above 15°C, up to 2.3-fold higher estimates of J2000 and more variable estimates of Vcmax and J2000, for our cotton data compared to model parameterisation with cotton-derived values. We determined that errors arise when using a gm,25 of 2.3 mol m-2 s-1 MPa-1 or less and Rubisco CO2-affinities in 21% O2 (KC 21%O2) at 25°C outside the range of 46-63 Pa to model A/Ci responses in cotton. We show how the A/Ci modelling capabilities of 'OptiFitACi' serves as a robust, user-friendly, and flexible extension of 'plantecophys' by providing simplified temperature-sensitivity and species-specificity parameterisation capabilities to reduce variability when modelling Vcmax and J2000.


Assuntos
Gossypium , Ribulose-Bifosfato Carboxilase , Gossypium/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Dióxido de Carbono , Temperatura , Fotossíntese/fisiologia , Folhas de Planta/metabolismo
2.
Plant J ; 109(3): 615-632, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34780111

RESUMO

Photosynthetic efficiency and sink demand are tightly correlated with rates of phloem loading, where maintaining low cytosolic sugar concentrations is paramount to prevent the downregulation of photosynthesis. Sugars Will Eventually be Exported Transporters (SWEETs) are thought to have a pivotal role in the apoplastic phloem loading of C4 grasses. SWEETs have not been well studied in C4 species, and their investigation is complicated by photosynthesis taking place across two cell types and, therefore, photoassimilate export can occur from either one. SWEET13 homologues in C4 grasses have been proposed to facilitate apoplastic phloem loading. Here, we provide evidence for this hypothesis using the C4 grass Setaria viridis. Expression analyses on the leaf gradient of C4 species Setaria and Sorghum bicolor show abundant transcript levels for SWEET13 homologues. Carbohydrate profiling along the Setaria leaf shows total sugar content to be significantly higher in the mature leaf tip compared with the younger tissue at the base. We present the first known immunolocalization results for SvSWEET13a and SvSWEET13b using novel isoform-specific antisera. These results show localization to the bundle sheath and phloem parenchyma cells of both minor and major veins. We further present the first transport kinetics study of C4 monocot SWEETs by using a Xenopus laevis oocyte heterologous expression system. We demonstrate that SvSWEET13a and SvSWEET13b are high-capacity transporters of glucose and sucrose, with a higher apparent Vmax for sucrose, compared with glucose, typical of clade III SWEETs. Collectively, these results provide evidence for an apoplastic phloem loading pathway in Setaria and possibly other C4 species.


Assuntos
Transporte Biológico/genética , Glucose/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Floema/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fotossíntese , Transcrição Gênica
3.
Plant Cell Environ ; 46(1): 23-44, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36200623

RESUMO

Photosynthetic manipulation provides new opportunities for enhancing crop yield. However, understanding and quantifying the importance of individual and multiple manipulations on the seasonal biomass growth and yield performance of target crops across variable production environments is limited. Using a state-of-the-art cross-scale model in the APSIM platform we predicted the impact of altering photosynthesis on the enzyme-limited (Ac ) and electron transport-limited (Aj ) rates, seasonal dynamics in canopy photosynthesis, biomass growth, and yield formation via large multiyear-by-location crop growth simulations. A broad list of promising strategies to improve photosynthesis for C3 wheat and C4 sorghum were simulated. In the top decile of seasonal outcomes, yield gains were predicted to be modest, ranging between 0% and 8%, depending on the manipulation and crop type. We report how photosynthetic enhancement can affect the timing and severity of water and nitrogen stress on the growing crop, resulting in nonintuitive seasonal crop dynamics and yield outcomes. We predicted that strategies enhancing Ac alone generate more consistent but smaller yield gains across all water and nitrogen environments, Aj enhancement alone generates larger gains but is undesirable in more marginal environments. Large increases in both Ac and Aj generate the highest gains across all environments. Yield outcomes of the tested manipulation strategies were predicted and compared for realistic Australian wheat and sorghum production. This study uniquely unpacks complex cross-scale interactions between photosynthesis and seasonal crop dynamics and improves understanding and quantification of the potential impact of photosynthesis traits (or lack of it) for crop improvement research.


Assuntos
Nitrogênio , Água , Austrália
4.
J Exp Bot ; 74(2): 562-580, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36412307

RESUMO

Rubisco catalysis is complex and includes an activation step through the formation of a carbamate at the conserved active site lysine residue and the formation of a highly reactive enediol that is the key to its catalytic reaction. The formation of this enediol is both the basis of its success and its Achilles' heel, creating imperfections to its catalytic efficiency. While Rubisco originally evolved in an atmosphere of high CO2, the earth's multiple oxidation events provided challenges to Rubisco through the fixation of O2 that competes with CO2 at the active site. Numerous catalytic screens across the Rubisco superfamily have identified significant variation in catalytic properties that have been linked to large and small subunit sequences. Despite this, we still have a rudimentary understanding of Rubisco's catalytic mechanism and how the evolution of kinetic properties has occurred. This review identifies the lysine base that functions both as an activator and a proton abstractor to create the enediol as a key to understanding how Rubisco may optimize its kinetic properties. The ways in which Rubisco and its partners have overcome catalytic and activation imperfections and thrived in a world of high O2, low CO2, and variable climatic regimes is remarkable.


Assuntos
Dióxido de Carbono , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/metabolismo , Lisina , Catálise , Domínio Catalítico
5.
J Exp Bot ; 74(10): 2968-2986, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36883216

RESUMO

In the developing seeds of all higher plants, filial cells are symplastically isolated from the maternal tissue supplying photosynthate to the reproductive structure. Photoassimilates must be transported apoplastically, crossing several membrane barriers, a process facilitated by sugar transporters. Sugars Will Eventually be Exported Transporters (SWEETs) have been proposed to play a crucial role in apoplastic sugar transport during phloem unloading and the post-phloem pathway in sink tissues. Evidence for this is presented here for developing seeds of the C4 model grass Setaria viridis. Using immunolocalization, SvSWEET4 was detected in various maternal and filial tissues within the seed along the sugar transport pathway, in the vascular parenchyma of the pedicel, and in the xylem parenchyma of the stem. Expression of SvSWEET4a in Xenopus laevis oocytes indicated that it functions as a high-capacity glucose and sucrose transporter. Carbohydrate and transcriptional profiling of Setaria seed heads showed that there were some developmental shifts in hexose and sucrose content and consistent expression of SvSWEET4 homologues. Collectively, these results provide evidence for the involvement of SWEETs in the apoplastic transport pathway of sink tissues and allow a pathway for post-phloem sugar transport into the seed to be proposed.


Assuntos
Setaria (Planta) , Açúcares , Açúcares/metabolismo , Setaria (Planta)/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Floema/metabolismo , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Sacarose/metabolismo
6.
J Exp Bot ; 74(1): 72-90, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36264277

RESUMO

Source traits are currently of great interest for the enhancement of yield potential; for example, much effort is being expended to find ways of modifying photosynthesis. However, photosynthesis is but one component of crop regulation, so sink activities and the coordination of diverse processes throughout the crop must be considered in an integrated, systems approach. A set of 'wiring diagrams' has been devised as a visual tool to integrate the interactions of component processes at different stages of wheat development. They enable the roles of chloroplast, leaf, and whole-canopy processes to be seen in the context of sink development and crop growth as a whole. In this review, we dissect source traits both anatomically (foliar and non-foliar) and temporally (pre- and post-anthesis), and consider the evidence for their regulation at local and whole-plant/crop levels. We consider how the formation of a canopy creates challenges (self-occlusion) and opportunities (dynamic photosynthesis) for components of photosynthesis. Lastly, we discuss the regulation of source activity by feedback regulation. The review is written in the framework of the wiring diagrams which, as integrated descriptors of traits underpinning grain yield, are designed to provide a potential workspace for breeders and other crop scientists that, along with high-throughput and precision phenotyping data, genetics, and bioinformatics, will help build future dynamic models of trait and gene interactions to achieve yield gains in wheat and other field crops.


Assuntos
Grão Comestível , Triticum , Triticum/fisiologia , Fenótipo , Grão Comestível/fisiologia , Fotossíntese/fisiologia , Folhas de Planta
7.
Plant Cell ; 32(9): 2898-2916, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647068

RESUMO

Engineering improved Rubisco for the enhancement of photosynthesis is challenged by the alternate locations of the chloroplast rbcL gene and nuclear RbcS genes. Here we develop an RNAi-RbcS tobacco (Nicotiana tabacum) master-line, tobRrΔS, for producing homogenous plant Rubisco by rbcL-rbcS operon chloroplast transformation. Four genotypes encoding alternative rbcS genes and adjoining 5'-intergenic sequences revealed that Rubisco production was highest (50% of the wild type) in the lines incorporating a rbcS gene whose codon use and 5' untranslated-region matched rbcL Additional tobacco genotypes produced here incorporated differing potato (Solanum tuberosum) rbcL-rbcS operons that either encoded one of three mesophyll small subunits (pS1, pS2, and pS3) or the potato trichome pST-subunit. The pS3-subunit caused impairment of potato Rubisco production by ∼15% relative to the lines producing pS1, pS2, or pST However, the ßA-ßB loop Asn-55-His and Lys-57-Ser substitutions in the pS3-subunit improved carboxylation rates by 13% and carboxylation efficiency (CE) by 17%, relative to potato Rubisco incorporating pS1 or pS2-subunits. Tobacco photosynthesis and growth were most impaired in lines producing potato Rubisco incorporating the pST-subunit, which reduced CE and CO2/O2 specificity 40% and 15%, respectively. Returning the rbcS gene to the plant plastome provides an effective bioengineering chassis for introduction and evaluation of novel homogeneous Rubisco complexes in a whole plant context.


Assuntos
Cloroplastos/genética , Nicotiana/fisiologia , Ribulose-Bifosfato Carboxilase/metabolismo , Solanum tuberosum/fisiologia , Proteínas de Bactérias/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Óperon , Iniciação Traducional da Cadeia Peptídica , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Subunidades Proteicas , Interferência de RNA , Rhodospirillum rubrum/genética , Ribulose-Bifosfato Carboxilase/genética , Solanum tuberosum/genética , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
8.
J Exp Bot ; 73(10): 3085-3108, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35274686

RESUMO

Improvement of photosynthetic traits in crops to increase yield potential and crop resilience has recently become a major breeding target. Synthetic biology and genetic technologies offer unparalleled opportunities to create new genetics for photosynthetic traits driven by existing fundamental knowledge. However, large 'gene bank' collections of germplasm comprising historical collections of crop species and their relatives offer a wealth of opportunities to find novel allelic variation in the key steps of photosynthesis, to identify new mechanisms and to accelerate genetic progress in crop breeding programmes. Here we explore the available genetic resources in food and fibre crops, strategies to selectively target allelic variation in genes underpinning key photosynthetic processes, and deployment of this variation via gene editing in modern elite material.


Assuntos
Ouro , Melhoramento Vegetal , Produtos Agrícolas/genética , Variação Genética , Fotossíntese/genética
9.
Plant Biotechnol J ; 18(6): 1409-1420, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31793172

RESUMO

Many C4 plants, including maize, perform poorly under chilling conditions. This phenomenon has been linked in part to decreased Rubisco abundance at lower temperatures. An exception to this is chilling-tolerant Miscanthus, which is able to maintain Rubisco protein content under such conditions. The goal of this study was to investigate whether increasing Rubisco content in maize could improve performance during or following chilling stress. Here, we demonstrate that transgenic lines overexpressing Rubisco large and small subunits and the Rubisco assembly factor RAF1 (RAF1-LSSS), which have increased Rubisco content and growth under control conditions, maintain increased Rubisco content and growth during chilling stress. RAF1-LSSS plants exhibited 12% higher CO2 assimilation relative to nontransgenic controls under control growth conditions, and a 17% differential after 2 weeks of chilling stress, although assimilation rates of all genotypes were ~50% lower in chilling conditions. Chlorophyll fluorescence measurements showed RAF1-LSSS and WT plants had similar rates of photochemical quenching during chilling, suggesting Rubisco may not be the primary limiting factor that leads to poor performance in maize under chilling conditions. In contrast, RAF1-LSSS had improved photochemical quenching before and after chilling stress, suggesting that increased Rubisco may help plants recover faster from chilling conditions. Relatively increased leaf area, dry weight and plant height observed before chilling in RAF1-LSSS were also maintained during chilling. Together, these results demonstrate that an increase in Rubisco content allows maize plants to better cope with chilling stress and also improves their subsequent recovery, yet additional modifications are required to engineer chilling tolerance in maize.


Assuntos
Ribulose-Bifosfato Carboxilase , Zea mays , Temperatura Baixa , Fotossíntese , Poaceae/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Zea mays/genética , Zea mays/metabolismo
10.
J Exp Bot ; 71(7): 2226-2238, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32083680

RESUMO

Photosynthesis has become a major trait of interest for cereal yield improvement as breeders appear to have reached the theoretical genetic limit for harvest index, the mass of grain as a proportion of crop biomass. Yield improvements afforded by the adoption of green revolution dwarfing genes to wheat and rice are becoming exhausted, and improvements in biomass and radiation use efficiency are now sought in these crops. Exploring genetic diversity in photosynthesis is now possible using high-throughput techniques, and low-cost genotyping facilitates discovery of the genetic architecture underlying this variation. Photosynthetic traits have been shown to be highly heritable, and significant variation is present for these traits in available germplasm. This offers hope that breeding for improved photosynthesis and radiation use efficiency in cereal crops is tractable and a useful shorter term adjunct to genetic and genome engineering to boost yield potential.


Assuntos
Grão Comestível , Fótons , Grão Comestível/genética , Fotossíntese , Melhoramento Vegetal , Triticum
11.
New Phytol ; 223(3): 1280-1295, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31087798

RESUMO

C4 plants achieve higher photosynthesis (An ) and intrinsic water use efficiency (iWUE) than C3 plants, but processes underpinning the variability in An and iWUE across the three C4 subtypes remain unclear, partly because we lack an integrated framework for quantifying the contribution of diffusional and biochemical limitations to C4 photosynthesis. We exploited the natural diversity among C4 grasses to develop an original mathematical approach for estimating eight key processes of C4 photosynthesis and their relative limitations to An . We also developed a new formulation to estimate mesophyll conductance (gm ) based on actual hydration rates of CO2 by carbonic anhydrases. We found a positive relationship between gm and iWUE and an inverse correlation with gsw among C4 grasses. We also revealed subtype-specific regulatory processes of iWUE that may be related to known anatomical traits characterising each C4 subtype. Leaf width was an important determinant of iWUE and showed significant correlations with key limitations of An , especially among NADP-ME species. In conclusion, incorporating leaf width in breeding trials may unlock new opportunities for C4 crops because the revealed negative relationship between leaf width and iWUE may translate into higher crop and canopy WUE.


Assuntos
Dióxido de Carbono/farmacologia , Carbono/metabolismo , Folhas de Planta/anatomia & histologia , Poaceae/anatomia & histologia , Poaceae/fisiologia , Água , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia
12.
Plant Physiol ; 178(1): 72-81, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30018172

RESUMO

Phosphoenolpyruvate carboxylase (PEPC), localized to the cytosol of the mesophyll cell, catalyzes the first carboxylation step of the C4 photosynthetic pathway. Here, we used RNA interference to target the cytosolic photosynthetic PEPC isoform in Setaria viridis and isolated independent transformants with very low PEPC activities. These plants required high ambient CO2 concentrations for growth, consistent with the essential role of PEPC in C4 photosynthesis. The combination of estimating direct CO2 fixation by the bundle sheath using gas-exchange measurements and modeling C4 photosynthesis with low PEPC activity allowed the calculation of bundle sheath conductance to CO2 diffusion (gbs ) in the progeny of these plants. Measurements made at a range of temperatures suggested no or negligible effect of temperature on gbs depending on the technique used to calculate gbs Anatomical measurements revealed that plants with reduced PEPC activity had reduced cell wall thickness and increased plasmodesmata (PD) density at the mesophyll-bundle sheath (M-BS) cell interface, whereas we observed little difference in these parameters at the mesophyll-mesophyll cell interface. The increased PD density at the M-BS interface was largely driven by an increase in the number of PD pit fields (cluster of PDs) rather than an increase in PD per pit field or the size of pit fields. The correlation of gbs with bundle sheath surface area per leaf area and PD area per M-BS area showed that these parameters and cell wall thickness are important determinants of gbs It is intriguing to speculate that PD development is responsive to changes in C4 photosynthetic flux.


Assuntos
Dióxido de Carbono/metabolismo , Células do Mesofilo/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Proteínas de Plantas/metabolismo , Feixe Vascular de Plantas/metabolismo , Setaria (Planta)/metabolismo , Parede Celular/metabolismo , Difusão , Fosfoenolpiruvato Carboxilase/genética , Fotossíntese , Proteínas de Plantas/genética , Feixe Vascular de Plantas/citologia , Plasmodesmos/metabolismo , Interferência de RNA , Setaria (Planta)/citologia , Setaria (Planta)/genética , Temperatura
13.
Plant Physiol ; 177(1): 168-180, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29545269

RESUMO

Semidwarfing genes have improved crop yield by reducing height, improving lodging resistance, and allowing plants to allocate more assimilates to grain growth. In wheat (Triticum aestivum), the Rht18 semidwarfing gene was identified and deployed in durum wheat before it was transferred into bread wheat, where it was shown to have agronomic potential. Rht18, a dominant and gibberellin (GA) responsive mutant, is genetically and functionally distinct from the widely used GA-insensitive semidwarfing genes Rht-B1b and Rht-D1b In this study, the Rht18 gene was identified by mutagenizing the semidwarf durum cultivar Icaro (Rht18) and generating mutants with a range of tall phenotypes. Isolating and sequencing chromosome 6A of these "overgrowth" mutants showed that they contained independent mutations in the coding region of GA2oxA9GA2oxA9 is predicted to encode a GA 2-oxidase that metabolizes GA biosynthetic intermediates into inactive products, effectively reducing the amount of bioactive GA (GA1). Functional analysis of the GA2oxA9 protein demonstrated that GA2oxA9 converts the intermediate GA12 to the inactive metabolite GA110 Furthermore, Rht18 showed higher expression of GA2oxA9 and lower GA content compared with its tall parent. These data indicate that the increased expression of GA2oxA9 in Rht18 results in a reduction of both bioactive GA content and plant height. This study describes a height-reducing mechanism that can generate new genetic diversity for semidwarfism in wheat by combining increased expression with mutations of specific amino acid residues in GA2oxA9.


Assuntos
Giberelinas/metabolismo , Proteínas de Plantas/genética , Triticum/crescimento & desenvolvimento , Triticum/genética , Centrômero/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Giberelinas/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Mutagênese , Proteínas de Plantas/metabolismo , Poliploidia , Regiões Promotoras Genéticas , Triticum/metabolismo
14.
Plant Physiol ; 175(4): 1624-1633, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29089394

RESUMO

In maize (Zea mays), Bundle Sheath Defective2 (BSD2) plays an essential role in Rubisco biogenesis and is required for correct bundle sheath (BS) cell differentiation. Yet, BSD2 RNA and protein levels are similar in mesophyll (M) and BS chloroplasts, although Rubisco accumulates only in BS chloroplasts. This raises the possibility of additional BSD2 roles in cell development. To test this hypothesis, transgenic lines were created that overexpress and underexpress BSD2 in both BS and M cells, driven by the cell type-specific Rubisco Small Subunit (RBCS) or Phosphoenolpyruvate Carboxylase (PEPC) promoters or the ubiquitin promoter. Genetic crosses showed that each of the transgenes could complement Rubisco deficiency and seedling lethality conferred by the bsd2 mutation. This was unexpected, as RBCS-BSD2 lines lacked BSD2 in M chloroplasts and PEPC-BSD2 lines expressed half the wild-type BSD2 level in BS chloroplasts. We conclude that BSD2 does not play a vital role in M cells and that BS BSD2 is in excess of requirements for Rubisco accumulation. BSD2 levels did affect chloroplast coverage in BS cells. In PEPC-BSD2 lines, chloroplast coverage decreased 30% to 50%, whereas lines with increased BSD2 content exhibited a 25% increase. This suggests that BSD2 has an ancillary role in BS cells related to chloroplast size. Gas exchange showed decreased photosynthetic rates in PEPC-BSD2 lines despite restored Rubisco function, correlating with reduced chloroplast coverage and pointing to CO2 diffusion changes. Conversely, increased chloroplast coverage did not result in increased Rubisco abundance or photosynthetic rates. This suggests another limitation beyond chloroplast volume, most likely Rubisco biogenesis and/or turnover rates.


Assuntos
Cloroplastos/fisiologia , Chaperonas Moleculares/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Zea mays/metabolismo , Clorofila/fisiologia , Regulação da Expressão Gênica de Plantas , Imagem Óptica , Folhas de Planta , Transpiração Vegetal , Plantas Geneticamente Modificadas , Ribulose-Bifosfato Carboxilase/genética , Zea mays/genética
15.
Plant Physiol ; 173(3): 1648-1658, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28153918

RESUMO

Neurachne is the only known grass lineage containing closely related C3, C3-C4 intermediate, and C4 species, making it an ideal taxon with which to study the evolution of C4 photosynthesis in the grasses. To begin dissecting the molecular changes that led to the evolution of C4 photosynthesis in this group, the complementary DNAs encoding four distinct ß-carbonic anhydrase (CA) isoforms were characterized from leaf tissue of Neurachne munroi (C4), Neurachne minor (C3-C4), and Neurachne alopecuroidea (C3). Two genes (CA1 and CA2) each encode two different isoforms: CA1a/CA1b and CA2a/CA2b. Transcript analyses found that CA1 messenger RNAs were significantly more abundant than transcripts from the CA2 gene in the leaves of each species examined, constituting ∼99% of all ß-CA transcripts measured. Localization experiments using green fluorescent protein fusion constructs showed that, while CA1b is a cytosolic CA in all three species, the CA1a proteins are differentially localized. The N. alopecuroidea and N. minor CA1a isoforms were imported into chloroplasts of Nicotiana benthamiana leaf cells, whereas N. munroi CA1a localized to the cytosol. Sequence analysis indicated an 11-amino acid deletion in the amino terminus of N. munroi CA1a relative to the C3 and C3-C4 proteins, suggesting that chloroplast targeting of CA1a is the ancestral state and that loss of a functional chloroplast transit peptide in N. munroi CA1a is associated with the evolution of C4 photosynthesis in Neurachne spp. Remarkably, this mechanism is homoplastic with the evolution of the C4-associated CA in the dicotyledonous genus Flaveria, although the actual mutations in the two lineages differ.


Assuntos
Anidrases Carbônicas/genética , Proteínas de Cloroplastos/genética , Fotossíntese/genética , Poaceae/genética , Sinais Direcionadores de Proteínas/genética , Sequência de Aminoácidos , Anidrase Carbônica I/genética , Anidrase Carbônica II/genética , Citoplasma/enzimologia , Citosol/enzimologia , Evolução Molecular , Deleção de Genes , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Isoenzimas/genética , Microscopia Confocal , Folhas de Planta/enzimologia , Folhas de Planta/genética , Poaceae/classificação , Poaceae/enzimologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
16.
Photosynth Res ; 138(2): 233-248, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30078073

RESUMO

Expanding knowledge of the C4 photosynthetic pathway can provide key information to aid biological improvements to crop photosynthesis and yield. While the C4 NADP-ME pathway is well characterised, there is increasing agricultural and bioengineering interest in the comparably understudied NAD-ME and PEPCK pathways. Within this study, a systematic identification of key differences across species has allowed us to investigate the evolution of C4-recruited genes in one C3 and eleven C4 grasses (Poaceae) spanning two independent origins of C4 photosynthesis. We present evidence for C4-specific paralogs of NAD-malic enzyme 2, MPC1 and MPC2 (mitochondrial pyruvate carriers) via increased transcript abundance and associated rates of evolution, implicating them as genes recruited to perform C4 photosynthesis within NAD-ME and PEPCK subtypes. We then investigate the localisation of AspAT across subtypes, using novel and published evidence to place AspAT3 in both the cytosol and peroxisome. Finally, these findings are integrated with transcript abundance of previously identified C4 genes to provide an updated model for C4 grass NAD-ME and PEPCK photosynthesis. This updated model allows us to develop on the current understanding of NAD-ME and PEPCK photosynthesis in grasses, bolstering our efforts to understand the evolutionary 'path to C4' and improve C4 photosynthesis.


Assuntos
Malato Desidrogenase/metabolismo , NAD/metabolismo , Fotossíntese/genética , Fotossíntese/fisiologia , Poaceae/fisiologia , Aminoácidos/metabolismo , Evolução Biológica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Genoma de Planta , Folhas de Planta
18.
J Exp Bot ; 69(12): 3053-3068, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29659931

RESUMO

The high energy cost and apparently low plasticity of C4 photosynthesis compared with C3 photosynthesis may limit the productivity and distribution of C4 plants in low light (LL) environments. C4 photosynthesis evolved numerous times, but it remains unclear how different biochemical subtypes perform under LL. We grew eight C4 grasses belonging to three biochemical subtypes [NADP-malic enzyme (NADP-ME), NAD-malic enzyme (NAD-ME), and phosphoenolpyruvate carboxykinase (PEP-CK)] under shade (16% sunlight) or control (full sunlight) conditions and measured their photosynthetic characteristics at both low and high light. We show for the first time that LL (during measurement or growth) compromised the CO2-concentrating mechanism (CCM) to a greater extent in NAD-ME than in PEP-CK or NADP-ME C4 grasses by virtue of a greater increase in carbon isotope discrimination (∆P) and bundle sheath CO2 leakiness (ϕ), and a greater reduction in photosynthetic quantum yield (Φmax). These responses were partly explained by changes in the ratios of phosphoenolpyruvate carboxylase (PEPC)/initial Rubisco activity and dark respiration/photosynthesis (Rd/A). Shade induced a greater photosynthetic acclimation in NAD-ME than in NADP-ME and PEP-CK species due to a greater Rubisco deactivation. Shade also reduced plant dry mass to a greater extent in NAD-ME and PEP-CK relative to NADP-ME grasses. In conclusion, LL compromised the co-ordination of the C4 and C3 cycles and, hence, the efficiency of the CCM to a greater extent in NAD-ME than in PEP-CK species, while CCM efficiency was less impacted by LL in NADP-ME species. Consequently, NADP-ME species are more efficient at LL, which could explain their agronomic and ecological dominance relative to other C4 grasses.


Assuntos
Meio Ambiente , Fotossíntese , Poaceae/metabolismo , Malato Desidrogenase/metabolismo , NAD/metabolismo , NADP/metabolismo , Fosfoenolpiruvato Carboxilase , Proteínas de Plantas/metabolismo , Poaceae/enzimologia , Especificidade da Espécie
19.
Glob Chang Biol ; 24(10): 4626-4644, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29804312

RESUMO

Climate is an important factor limiting tree distributions and adaptation to different thermal environments may influence how tree populations respond to climate warming. Given the current rate of warming, it has been hypothesized that tree populations in warmer, more thermally stable climates may have limited capacity to respond physiologically to warming compared to populations from cooler, more seasonal climates. We determined in a controlled environment how several provenances of widely distributed Eucalyptus tereticornis and E. grandis adjusted their photosynthetic capacity to +3.5°C warming along their native distribution range (~16-38°S) and whether climate of seed origin of the provenances influenced their response to different growth temperatures. We also tested how temperature optima (Topt ) of photosynthesis and Jmax responded to higher growth temperatures. Our results showed increased photosynthesis rates at a standardized temperature with warming in temperate provenances, while rates in tropical provenances were reduced by about 40% compared to their temperate counterparts. Temperature optima of photosynthesis increased as provenances were exposed to warmer growth temperatures. Both species had ~30% reduced photosynthetic capacity in tropical and subtropical provenances related to reduced leaf nitrogen and leaf Rubisco content compared to temperate provenances. Tropical provenances operated closer to their thermal optimum and came within 3% of the Topt of Jmax during the daily temperature maxima. Hence, further warming may negatively affect C uptake and tree growth in warmer climates, whereas eucalypts in cooler climates may benefit from moderate warming.


Assuntos
Clima , Eucalyptus/metabolismo , Nitrogênio/metabolismo , Fotossíntese , Ribulose-Bifosfato Carboxilase/metabolismo , Aclimatação , Mudança Climática , Ambiente Controlado , Eucalyptus/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Temperatura , Árvores/crescimento & desenvolvimento
20.
New Phytol ; 213(2): 494-510, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27935049

RESUMO

494 I. 495 II. 496 III. 496 IV. 499 V. 499 VI. 501 VII. 501 VIII. 502 IX. 505 X. 506 507 References 507 SUMMARY: The uncertainty of future climate change is placing pressure on cropping systems to continue to provide stable increases in productive yields. To mitigate future climates and the increasing threats against global food security, new solutions to manipulate photosynthesis are required. This review explores the current efforts available to improve carbon assimilation within plant chloroplasts by engineering Rubisco, which catalyzes the rate-limiting step of CO2 fixation. Fixation of CO2 and subsequent cycling of 3-phosphoglycerate through the Calvin cycle provides the necessary carbohydrate building blocks for maintaining plant growth and yield, but has to compete with Rubisco oxygenation, which results in photorespiration that is energetically wasteful for plants. Engineering improvements in Rubisco is a complex challenge and requires an understanding of chloroplast gene regulatory pathways, and the intricate nature of Rubisco catalysis and biogenesis, to transplant more efficient forms of Rubisco into crops. In recent times, major advances in Rubisco engineering have been achieved through improvement of our knowledge of Rubisco synthesis and assembly, and identifying amino acid catalytic switches in the L-subunit responsible for improvements in catalysis. Improving the capacity of CO2 fixation in crops such as rice will require further advances in chloroplast bioengineering and Rubisco biogenesis.


Assuntos
Biocatálise , Bioengenharia/métodos , Cloroplastos/metabolismo , Produtos Agrícolas/metabolismo , Alimentos , Ribulose-Bifosfato Carboxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA