Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cogn Neurosci ; 14(4): 127-136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37707299

RESUMO

Selective attention and conflict monitoring are daily human phenomena, yet the spatial and temporal neurological underpinnings of these processes are not fully understood. Current literature suggests these executive functions occur via diverse and highly interconnected neural networks, including top-down, bottom-up, and conflict-control loops. To investigate the spatiotemporal activity of these processes, we collected neuromagnetic data using magnetoencephalography (MEG) in 28 healthy adults (age 19-36), while they performed a computerized Stroop task based on color naming. We focused on low-frequency oscillations in the context of top-down control and hypothesized that conflict monitoring-related activity would first be observed in the left anterior cingulate cortex, followed by the left dorsolateral prefrontal cortex, and subsequently in the parietal and temporal lobes. Significant activity between 600-1000 ms post-stimulus onset was found for incongruent vs. congruent/neutral contrasts. Interestingly, spatiotemporal analysis did not provide evidence for a top-down pattern of activation, instead revealing a simultaneous pattern of activation in the frontal and temporal lobes. Most notable is the involvement of the left posterior inferior temporal cortex (pITC) and the left temporoparietal junction (TPJ), which have not conventionally been considered active players in attentional control. These results may be largely driven by alpha and beta oscillations from our sample population. Our findings challenge early theoretical models of top-down processing in the context of cognitive control from an attention perspective and also suggest a need to investigate attentional centers in the temporal lobe. Furthermore, the study highlights the valuable temporal data provided by MEG, which has been missing from previous studies.

2.
Exp Brain Res ; 216(4): 585-90, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22130780

RESUMO

Prior reports have described a transient and focal decline in transcranial magnetic stimulation (TMS)-induced motor evoked potential (MEP) amplitude following fatiguing motor tasks. However, the neurophysiological causes of this change in MEP amplitude are unknown. The aim of this study was to determine whether post-task depression of MEPs is associated with repetitive central motor initiation. We hypothesized that MEP depression is related to repeated central initiation of motor commands in task-related cortex independent of motor fatigue. Twenty healthy adults had MEPs measured from the dominant first dorsal interosseous (FDI) muscle before and after six different tasks: rest (no activity), contralateral fatiguing hand-grip, ipsilateral fatiguing hand-grip, contralateral finger tapping, ipsilateral finger tapping, and imagined hand-grip (motor imagery). Changes in MEPs from baseline were assessed for each task immediately following the task and at 2-min intervals until MEPs returned to a stable baseline. Measures of subjective effort and FDI maximum voluntary contractions (MVC) were also recorded following each task. A statistically significant drop in MEP amplitude was noted only with contralateral finger tapping and imagined grip. Changes in MEP amplitude did not correlate with subjective fatigue or effort. There was no significant change in FDI MVCs following hand-grip or finger-tapping tasks. This study extends our knowledge of the observed decline in MEP amplitude following certain tasks. Our results suggest that central initiation of motor programs may induce a change in MEP amplitude, even in the absence of objective fatigue.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Fadiga Muscular/fisiologia , Inibição Neural/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Idoso , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA