Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Am J Respir Crit Care Med ; 209(1): 70-82, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37878820

RESUMO

Rationale: Acute lung injury (ALI) carries a high risk of mortality but has no established pharmacologic therapy. We previously found that experimental ALI occurs through natural killer (NK) cell NKG2D receptor activation and that the cognate human ligand, MICB, was associated with ALI after transplantation. Objectives: To investigate the association of a common missense variant, MICBG406A, with ALI. Methods: We assessed MICBG406A genotypes within two multicenter observational study cohorts at risk for ALI: primary graft dysfunction (N = 619) and acute respiratory distress syndrome (N = 1,376). Variant protein functional effects were determined in cultured and ex vivo human samples. Measurements and Main Results: Recipients of MICBG406A-homozygous allografts had an 11.1% absolute risk reduction (95% confidence interval [CI], 3.2-19.4%) for severe primary graft dysfunction after lung transplantation and reduced risk for allograft failure (hazard ratio, 0.36; 95% CI, 0.13-0.98). In participants with sepsis, we observed 39% reduced odds of moderately or severely impaired oxygenation among MICBG406A-homozygous individuals (95% CI, 0.43-0.86). BAL NK cells were less frequent and less mature in participants with MICBG406A. Expression of missense variant protein MICBD136N in cultured cells resulted in reduced surface MICB and reduced NKG2D ligation relative to wild-type MICB. Coculture of variant MICBD136N cells with NK cells resulted in less NKG2D activation and less susceptibility to NK cell killing relative to the wild-type cells. Conclusions: These data support a role for MICB signaling through the NKG2D receptor in mediating ALI, suggesting a novel therapeutic approach.


Assuntos
Lesão Pulmonar Aguda , Disfunção Primária do Enxerto , Humanos , Lesão Pulmonar Aguda/genética , Genômica , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo
2.
Am J Respir Cell Mol Biol ; 71(4): 388-406, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39189891

RESUMO

Lung endothelium resides at the interface between the circulation and the underlying tissue, where it senses biochemical and mechanical properties of both the blood as it flows through the vascular circuit and the vessel wall. The endothelium performs the bidirectional signaling between the blood and tissue compartments that is necessary to maintain homeostasis while physically separating both, facilitating a tightly regulated exchange of water, solutes, cells, and signals. Disruption in endothelial function contributes to vascular disease, which can manifest in discrete vascular locations along the artery-to-capillary-to-vein axis. Although our understanding of mechanisms that contribute to endothelial cell injury and repair in acute and chronic vascular disease have advanced, pathophysiological mechanisms that underlie site-specific vascular disease remain incompletely understood. In an effort to improve the translatability of mechanistic studies of the endothelium, the American Thoracic Society convened a workshop to optimize rigor, reproducibility, and translation of discovery to advance our understanding of endothelial cell function in health and disease.


Assuntos
Endotélio Vascular , Pulmão , Humanos , Pulmão/patologia , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Animais , Estados Unidos , Sociedades Médicas , Pneumopatias/patologia , Pneumopatias/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia
3.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L29-L38, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37991487

RESUMO

Cell-free hemoglobin (CFH) is elevated in the airspace of patients with acute respiratory distress syndrome (ARDS) and is sufficient to cause acute lung injury in a murine model. However, the pathways through which CFH causes lung injury are not well understood. Toll-like receptor 4 (TLR4) is a mediator of inflammation after detection of damage- and pathogen-associated molecular patterns. We hypothesized that TLR4 signaling mediates the proinflammatory effects of CFH in the airspace. After intratracheal CFH, BALBc mice deficient in TLR4 had reduced inflammatory cell influx into the airspace [bronchoalveolar lavage (BAL) cell counts, median TLR4 knockout (KO): 0.8 × 104/mL [IQR 0.4-1.2 × 104/mL], wild-type (WT): 3.0 × 104/mL [2.2-4.0 × 104/mL], P < 0.001] and attenuated lung permeability (BAL protein, TLR4KO: 289 µg/mL [236-320], WT: 488 µg/mL [422-536], P < 0.001). These mice also had attenuated production of interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α in the airspace. C57Bl/6 mice lacking TLR4 on myeloid cells only (LysM.Cre+/-TLR4fl/fl) had reduced cytokine production in the airspace after CFH, without attenuation of lung permeability. In vitro studies confirm that WT primary murine alveolar macrophages exposed to CFH (0.01-1 mg/mL) had dose-dependent increases in IL-6, IL-1 ß, CXC motif chemokine ligand 1 (CXCL-1), TNF-α, and IL-10 (P < 0.001). Murine MH-S alveolar-like macrophages show TLR4-dependent expression of IL-1ß, IL-6, and CXCL-1 in response to CFH. Primary alveolar macrophages from mice lacking TLR4 adaptor proteins myeloid differentiation primary response 88 (MyD88) or TIR-domain-containing adapter-inducing interferon-ß (TRIF) revealed that MyD88KO macrophages had 71-96% reduction in CFH-dependent proinflammatory cytokine production (P < 0.001), whereas macrophages from TRIFKO mice had variable changes in cytokine responses. These data demonstrate that myeloid TLR4 signaling through MyD88 is a key regulator of airspace inflammation in response to CFH.NEW & NOTEWORTHY Cell-free hemoglobin (CFH) is elevated in the airspace of most patients with acute respiratory distress syndrome and causes severe inflammation. Here, we identify that CFH contributes to macrophage-induced cytokine production via Toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) signaling. These data increase our knowledge of the mechanisms through which CFH contributes to lung injury and may inform development of targeted therapeutics to attenuate inflammation.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Humanos , Camundongos , Animais , Receptor 4 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Interleucina-6/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citocinas/metabolismo , Macrófagos/metabolismo , Inflamação/etiologia , Fator de Necrose Tumoral alfa/metabolismo , Lesão Pulmonar Aguda/metabolismo , Hemoglobinas/metabolismo , Síndrome do Desconforto Respiratório/complicações , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Am J Respir Crit Care Med ; 206(3): 260-270, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35550018

RESUMO

Rationale: Constrictive bronchiolitis (ConB) is a relatively rare and understudied form of lung disease whose underlying immunopathology remains incompletely defined. Objectives: Our objectives were to quantify specific pathological features that differentiate ConB from other diseases that affect the small airways and to investigate the underlying immune and inflammatory phenotype present in ConB. Methods: We performed a comparative histomorphometric analysis of small airways in lung biopsy samples collected from 50 soldiers with postdeployment ConB, 8 patients with sporadic ConB, 55 patients with chronic obstructive pulmonary disease, and 25 nondiseased control subjects. We measured immune and inflammatory gene expression in lung tissue using the NanoString nCounter Immunology Panel from six control subjects, six soldiers with ConB, and six patients with sporadic ConB. Measurements and Main Results: Compared with control subjects, we found shared pathological changes in small airways from soldiers with postdeployment ConB and patients with sporadic ConB, including increased thickness of the smooth muscle layer, increased collagen deposition in the subepithelium, and lymphocyte infiltration. Using principal-component analysis, we showed that ConB pathology was clearly separable both from control lungs and from small airway disease associated with chronic obstructive pulmonary disease. NanoString gene expression analysis from lung tissue revealed T-cell activation in both groups of patients with ConB with upregulation of proinflammatory pathways, including cytokine-cytokine receptor interactions, NF-κB (nuclear factor-κB) signaling, TLR (Toll-like receptor) signaling, T-cell receptor signaling, and antigen processing and presentation. Conclusions: These findings indicate shared immunopathology among different forms of ConB and suggest that an ongoing T-helper cell type 1-type adaptive immune response underlies airway wall remodeling in ConB.


Assuntos
Asma , Bronquiolite Obliterante , Doença Pulmonar Obstrutiva Crônica , Remodelação das Vias Aéreas/fisiologia , Humanos , Pulmão , NF-kappa B/metabolismo
5.
Am J Respir Cell Mol Biol ; 67(1): 50-60, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35468042

RESUMO

Immune cells have been implicated in idiopathic pulmonary fibrosis (IPF), but the phenotypes and effector mechanisms of these cells remain incompletely characterized. We performed mass cytometry to quantify immune cell subsets in lungs of 12 patients with IPF and 15 organ donors without chronic lung disease and used existing single-cell RNA-sequencing data to investigate transcriptional profiles of immune cells overrepresented in IPF. Among myeloid cells, we found increased numbers of alveolar macrophages (AMØs) and dendritic cells (DCs) in IPF, as well as a subset of monocyte-derived DCs. In contrast, monocyte-like cells and interstitial macrophages were reduced in IPF. Transcriptomic profiling identified an enrichment for IFN-γ response pathways in AMØs and DCs from IPF, as well as antigen processing in DCs and phagocytosis in AMØs. Among T cells, we identified three subsets of memory T cells that were increased in IPF, including CD4+ and CD8+ resident memory T cells (TRM) and CD8+ effector memory cells. The response to the IFN-γ pathway was enriched in CD4 TRM and CD8 TRM cells in IPF, together with T cell activation and immune response-regulating signaling pathways. Increased AMØs, DCs, and memory T cells were present in IPF lungs compared with control subjects. In IPF, these cells possess an activation profile indicating increased IFN-γ signaling and upregulation of adaptive immunity in the lungs. Together, these studies highlight critical features of the immunopathogenesis of IPF.


Assuntos
Fibrose Pulmonar Idiopática , Análise de Célula Única , Perfilação da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Macrófagos Alveolares/metabolismo
6.
Am J Physiol Lung Cell Mol Physiol ; 322(2): L273-L282, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34936510

RESUMO

Mouse models of acute lung injury (ALI) have been instrumental for studies of the biological underpinnings of lung inflammation and permeability, but murine models of sepsis generate minimal lung injury. Our goal was to create a murine sepsis model of ALI that reflects the inflammation, lung edema, histological abnormalities, and physiological dysfunction that characterize ALI. Using a cecal slurry (CS) model of polymicrobial abdominal sepsis and exposure to hyperoxia (95%), we systematically varied the timing and dose of the CS injection, fluids and antibiotics, and dose of hyperoxia. We found that CS alone had a high mortality rate that was improved with the addition of antibiotics and fluids. Despite this, we did not see evidence of ALI as measured by bronchoalveolar lavage (BAL) cell count, total protein, C-X-C motif chemokine ligand 1 (CXCL-1) or by lung wet:dry weight ratio. Addition of hyperoxia [95% fraction of inspired oxygen ([Formula: see text])] to CS immediately after CS injection increased BAL cell counts, CXCL-1, and lung wet:dry weight ratio but was associated with 40% mortality. Splitting the hyperoxia treatment into two 12-h exposures (0-12 h and 24-36 h) after CS injection increased survival to 75% and caused significant lung injury compared with CS alone as measured by increased BAL total cell count (92,500 vs. 240,000, P = 0.0004), BAL protein (71 vs. 103 µg/mL, P = 0.0030), and lung wet:dry weight ratio (4.5 vs. 5.5, P = 0.0005), and compared with sham as measured by increased BAL CXCL-1 (20 vs. 2,372 pg/mL, P < 0.0001) and histological lung injury score (1.9 vs. 4.2, P = 0.0077). In addition, our final model showed evidence of lung epithelial [increased BAL and plasma receptor for advanced glycation end products (RAGE)] and endothelial (increased Syndecan-1 and sulfated glycosaminoglycans) injury. In conclusion, we have developed a clinically relevant mouse model of sepsis-induced ALI using intraperitoneal injection of CS, antibiotics and fluids, and hyperoxia. This clinically relevant model can be used for future studies of sepsis-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Hiperóxia , Sepse , Lesão Pulmonar Aguda/patologia , Animais , Antibacterianos/efeitos adversos , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Hiperóxia/complicações , Hiperóxia/patologia , Inflamação/patologia , Pulmão/metabolismo , Camundongos , Permeabilidade , Sepse/patologia
7.
Pharmacogenet Genomics ; 32(5): 209-217, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35389944

RESUMO

OBJECTIVES: Interpatient variability in tacrolimus pharmacokinetics is attributed to metabolism by cytochrome P-450 3A4/5 isoenzymes (encoded by CYP3A4 and CYP3A5). Guidelines for adjusting tacrolimus based on CYP3A5 test results are published; however, CYP3A4 variants also contribute to the variability in tacrolimus pharmacokinetics. The effects of composite phenotypes incorporating CYP3A5 and CYP3A4 increased (*1G, *1B) and decreased (*22) function variants have not been evaluated. The objective of this study is to investigate the impact of both increased and decreased function CYP3A variants on weight and dose-adjusted tacrolimus concentration (C0/D). METHODS: We performed a single-center retrospective cohort study of lung transplant recipients to evaluate the median tacrolimus C0/D by composite CYP3A phenotype groups during the index transplant hospitalization. CYP3A4 and CYP3A5 alleles were used to classify patients into four CYP3A groups from least to most CYP3A activity. Exploratory analyses of ABCB1 and additional candidate genes were also assessed. RESULTS: Of the 92 included individuals, most (58) were CYP3A Group 2. The median tacrolimus C0/D differed significantly between CYP3A groups (P = 0.0001). CYP3A Group 2 median tacrolimus C0/D was 190.5 (interquartile range: 147.6-267.5) (ng/ml)/(mg/kg/d) and significantly higher than Group 4 [107.9 (90.4-116.1), P = 0.0001)]. Group 2 median tacrolimus C0/D did not significantly differ from Group 1 and Group 3 [373.5 (149.2-490.3) and 81.4 (62.6-184.1), respectively]. No significant differences in tacrolimus C0/D were found for the ABCB1 diplotypes. CONCLUSION: These data indicate that a composite CYP3A phenotype incorporating both increase and decrease variant information from CYP3A4 in addition to CYP3A5 may significantly influence tacrolimus C0/D during the early postoperative period.


Assuntos
Transplante de Rim , Tacrolimo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Genótipo , Humanos , Imunossupressores/farmacocinética , Pulmão , Fenótipo , Polimorfismo de Nucleotídeo Único , Estudos Retrospectivos , Tacrolimo/farmacocinética , Transplantados
8.
Transpl Infect Dis ; 24(6): e13967, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36271645

RESUMO

BACKGROUND: Reports on outcomes following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in lung transplant recipients remain limited. METHODS: We performed a single-center, observational study of outcomes in lung transplant recipients diagnosed with SARS-CoV-2 between 5/1/2020 and 3/15/2022 that were followed for a median of 123 days. We analyzed changes in spirometry, acute lung allograft dysfunction (ALAD) incidence, hospitalization, mechanical ventilation needs, secondary infection, and survival. RESULTS: In our cohort of 336 patients, 103 developed coronavirus disease (COVID) (27 pre-Delta, 20 Delta, and 56 Omicron-era). Twenty-five patients (24%) required hospitalization and 10 patients ultimately died (10%). Among 85 survivors who completed ambulatory spirometry, COVID-19 did not alter change in forced expiratory volume in 1 s (FEV1 ) or forced vital capacity (FVC) over time compared to the preceding 6 months. The pre-COVID FEV1 change was -0.05 ml/day (IQR -0.50 to 0.60) compared to -0.20 ml/day (IQR -1.40 to 0.70) post-COVID (p = .16). The pre-COVID change in FVC was 0.20 ml/day (IQR -0.60 to 0.70) compared to 0.05 ml/day (IQR -1.00 to 1.10) post-COVID (p = .76). Although the cohort overall had stable lung function, 33 patients (39%) developed ALAD or accelerated chronic lung allograft dysfunction (FEV1 decline >10% from pre-COVID baseline). Nine patients (35%) with ALAD recovered lung function. Within 3 months of acute COVID infection, 18 patients (17%) developed secondary infections, the majority being bacterial pneumonia. Finally, vaccination with at least two doses of mRNA vaccine was not associated with improved outcomes. CONCLUSIONS: This study describes the natural history of SARS-CoV-2 infection in a large cohort of lung transplant recipients. Although one third of patients develop ALAD requiring augmented immunosuppression, infection with SARS-CoV-2 is not associated with worsening lung function.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Transplantados , Pulmão , Progressão da Doença
9.
Int J Mol Sci ; 23(13)2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35806422

RESUMO

Adipocyte iron overload is a maladaptation associated with obesity and insulin resistance. The objective of the current study was to determine whether and how adipose tissue macrophages (ATMs) regulate adipocyte iron concentrations and whether this is impacted by obesity. Using bone marrow-derived macrophages (BMDMs) polarized to M0, M1, M2, or metabolically activated (MMe) phenotypes, we showed that MMe BMDMs and ATMs from obese mice have reduced expression of several iron-related proteins. Furthermore, the bioenergetic response to iron in obese ATMs was hampered. ATMs from iron-injected lean mice increased their glycolytic and respiratory capacities, thus maintaining metabolic flexibility, while ATMs from obese mice did not. Using an isotope-based system, we found that iron exchange between BMDMs and adipocytes was regulated by macrophage phenotype. At the end of the co-culture, MMe macrophages transferred and received more iron from adipocytes than M0, M1, and M2 macrophages. This culminated in a decrease in total iron in MMe macrophages and an increase in total iron in adipocytes compared with M2 macrophages. Taken together, in the MMe condition, the redistribution of iron is biased toward macrophage iron deficiency and simultaneous adipocyte iron overload. These data suggest that obesity changes the communication of iron between adipocytes and macrophages and that rectifying this iron communication channel may be a novel therapeutic target to alleviate insulin resistance.


Assuntos
Resistência à Insulina , Sobrecarga de Ferro , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Inflamação/metabolismo , Ferro/metabolismo , Sobrecarga de Ferro/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Obesos , Obesidade/metabolismo , Fenótipo
10.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L785-L790, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33655765

RESUMO

Noninvasive sampling of the distal airspace in patients with acute respiratory distress syndrome (ARDS) has long eluded clinical and translational researchers. We recently reported that fluid collected from heat moisture exchange (HME) filters closely mirrors fluid directly aspirated from the distal airspace. In the current study, we sought to determine fluid yield from different HME types, optimal HME circuit dwell time, and reliability of HME fluid in reflecting the distal airspace. We studied fluid yield from four different filter types by loading increasing volumes of saline and measuring volumes of fluid recovered. We collected filters after 1, 2, and 4 h of dwell time for measurement of fluid volume and total protein from 13 subjects. After identifying 4 h as the optimal dwell time, we measured total protein and IgM in HME fluid from 42 subjects with ARDS and nine with hydrostatic pulmonary edema (HYDRO). We found that the fluid yield varies greatly by filter type. With timed sample collection, fluid recovery increased with increasing circuit dwell time with a median volume of 2.0 mL [interquartile range (IQR) 1.2-2.7] after 4 h. Total protein was higher in the 42 subjects with ARDS compared with nine with HYDRO [median 708 µg/mL (IQR 244-2017) vs. 364 µg/mL (IQR 136-578), P = 0.047], confirming that total protein concentration in HME is higher in ARDS compared with hydrostatic edema. These studies establish a standardized HME fluid collection protocol and confirm that HME fluid analysis is a novel noninvasive tool for the study of the distal airspace in ARDS.


Assuntos
Técnicas de Diagnóstico do Sistema Respiratório/normas , Temperatura Alta , Umidade , Edema Pulmonar/diagnóstico , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Testes Respiratórios , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Edema Pulmonar/fisiopatologia , Síndrome do Desconforto Respiratório/fisiopatologia
11.
Am J Transplant ; 21(7): 2333-2340, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33749996

RESUMO

With the introduction of high-throughput sequencing methods, our understanding of the human lower respiratory tract's inhabitants has expanded significantly in recent years. What is now termed the "lung microbiome" has been described for healthy patients, as well as people with chronic lung diseases and lung transplants. The lung microbiome of lung transplant recipients (LTRs) has proven to be unique compared with nontransplant patients, with characteristic findings associated with disease states, such as pneumonia, acute rejection, and graft failure. In this review, we summarize the current understanding of the lung microbiome in LTRs, not only focusing on bacteria but also highlighting key findings of the viral and the fungal community. Based on our knowledge of the lung microbiome in LTRs, we propose multiple opportunities for clinical use of the microbiome to improve outcomes in this population.


Assuntos
Pneumopatias , Transplante de Pulmão , Microbiota , Rejeição de Enxerto/etiologia , Humanos , Pulmão , Pneumopatias/cirurgia , Transplantados
12.
Crit Care ; 25(1): 48, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33541396

RESUMO

BACKGROUND: Endothelial dysfunction and injury is a major pathophysiologic feature of sepsis. Sepsis is also the most frequent cause of acute kidney injury (AKI) in critically ill patients. Though most studies of AKI in sepsis have focused on tubular epithelial injury, the role of endothelial dysfunction and injury is less well studied. The goal of this study was first to investigate whether endothelial dysfunction and injury biomarkers were associated with severe AKI in sepsis patients. The second goal was to determine the best performing biomarker for severe AKI and whether this biomarker was associated with severe AKI across different etiologies of sepsis and clinical outcomes. METHODS: We studied adults with severe sepsis and acute respiratory failure (ARF) enrolled in the prospective observational Validating Acute Lung Injury markers for Diagnosis (VALID) study. Plasma endothelial dysfunction and injury biomarkers, including angiopoietin-2, soluble vascular endothelial cadherin (sVE-cadherin), endocan and syndecan-1, were measured at study enrollment. Primary analysis focused on the association between endothelial biomarker levels with severe AKI (defined as Kidney Disease: Improving Global Outcomes [KDIGO] AKI stage 2 or 3), other organ dysfunctions (defined by Brussels organ failure scores), and comparison of pulmonary versus non-pulmonary sepsis. RESULTS: Among 228 sepsis patients enrolled, 141 developed severe AKI. Plasma levels of angiopoietin-2, endocan, sVE-cadherin, and syndecan-1 were significantly higher in sepsis patients with severe AKI compared to those without severe AKI. Among four endothelial biomarkers, only angiopoietin-2 was independently associated with severe AKI (odds ratio 6.07 per log increase, 95% CI 2.34-15.78, p < 0.001). Plasma angiopoietin-2 levels by quartile were significantly higher in sepsis patients with hepatic, coagulation, and circulatory failure. Plasma angiopoietin-2 levels were also significantly higher in patients with non-pulmonary sepsis compared to subjects with pulmonary sepsis. CONCLUSION: Among four biomarkers of endothelial dysfunction and injury, angiopoietin-2 had the most robust independent association with development of severe AKI in patients with severe sepsis and ARF. Plasma angiopoietin-2 levels were also associated with other organ dysfunctions, non-pulmonary sepsis, and death. These findings highlight the importance of early endothelial dysfunction and injury in the pathogenesis of sepsis-induced AKI.


Assuntos
Injúria Renal Aguda/etiologia , Angiopoietina-2/análise , Sepse/complicações , Injúria Renal Aguda/sangue , Adulto , Idoso , Angiopoietina-2/sangue , Biomarcadores/análise , Biomarcadores/sangue , Caderinas/análise , Caderinas/sangue , Distribuição de Qui-Quadrado , Endotélio/fisiopatologia , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/sangue , Razão de Chances , Escores de Disfunção Orgânica , Estudos Prospectivos , Proteoglicanas/análise , Proteoglicanas/sangue , Insuficiência Respiratória/sangue , Insuficiência Respiratória/complicações , Sepse/sangue , Estatísticas não Paramétricas , Sindecana-1/análise , Sindecana-1/sangue
13.
Crit Care Med ; 48(1): 22-30, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31599812

RESUMO

OBJECTIVES: New-onset atrial fibrillation during critical illness is an independent risk factor for mortality. The ability to identify patients at high risk for new-onset atrial fibrillation is limited. We hypothesized that genetic susceptibility contributes to risk of new-onset atrial fibrillation in the ICU. DESIGN: Retrospective sub-study of a prospective observational cohort study. SETTING: Medical and general surgical ICUs in a tertiary academic medical center. PATIENTS: One-thousand three-hundred sixty-nine critically ill patients admitted to the ICU for at least 2 days with no known history of atrial fibrillation who had DNA available for genotyping. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We genotyped 21 single-nucleotide polymorphisms associated with atrial fibrillation in ambulatory studies using a Sequenom platform (San Diego, CA). We collected demographics, medical history, and development of new-onset atrial fibrillation during the first four days of ICU admission. New-onset atrial fibrillation occurred in 98 patients (7.2%) and was associated with age, male sex, coronary artery disease, and vasopressor use. Single-nucleotide polymorphisms associated with new-onset atrial fibrillation were rs3853445 (near PITX2, p = 0.0002), rs6838973 (near PITX2, p = 0.01), and rs12415501 (in NEURL, p = 0.03) on univariate testing. When controlling for clinical factors, rs3853445 (odds ratio, 0.47; 95% CI, 0.30-0.73; p = 0.001) and rs12415501 (odds ratio, 1.72; 95% CI, 1.27-2.59; p = 0.01) remained significantly associated with new-onset atrial fibrillation. The addition of genetic variables to clinical factors improved new-onset atrial fibrillation discrimination in a multivariable logistic regression model (C-statistic 0.82 vs 0.78; p = 0.0009). CONCLUSIONS: We identified several single-nucleotide polymorphisms associated with new-onset atrial fibrillation in a large cohort of critically ill ICU patients, suggesting there is genetic susceptibility underlying this common clinical condition. This finding may provide new targets for future mechanistic studies and additional insight into the application of genomic information to identify patients at elevated risk for a common and important condition in the ICU.


Assuntos
Fibrilação Atrial/genética , Predisposição Genética para Doença , Idoso , Estudos de Coortes , Estado Terminal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Estudos Retrospectivos , Fatores de Risco
15.
Am J Physiol Renal Physiol ; 317(4): F922-F929, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31364379

RESUMO

Acute kidney injury is a common complication of severe sepsis and contributes to high mortality. The molecular mechanisms of acute kidney injury during sepsis are not fully understood. Because hemoproteins, including myoglobin and hemoglobin, are known to mediate kidney injury during rhabdomyolysis, we hypothesized that cell-free hemoglobin (CFH) would exacerbate acute kidney injury during sepsis. Sepsis was induced in mice by intraperitoneal injection of cecal slurry (CS). To mimic elevated levels of CFH observed during human sepsis, mice also received a retroorbital injection of CFH or dextrose control. Four groups of mice were analyzed: sham treated (sham), CFH alone, CS alone, and CS + CFH. The addition of CFH to CS reduced 48-h survival compared with CS alone (67% vs. 97%, P = 0.001) and increased the severity of illness. After 24 and 48 h, CS + CFH mice had a reduced glomerular filtration rate from baseline, whereas sham, CFH, and CS mice maintained baseline glomerular filtration rate. Biomarkers of acute kidney injury, neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1), were markedly elevated in CS+CFH compared with CS (8-fold for NGAL and 2.4-fold for KIM-1, P < 0.002 for each) after 48 h. Histological examination showed a trend toward increased tubular injury in CS + CFH-exposed kidneys compared with CS-exposed kidneys. However, there were similar levels of renal oxidative injury and apoptosis in the CS + CFH group compared with the CS group. Kidney levels of multiple proinflammatory cytokines were similar between CS and CS + CFH groups. Human renal tubule cells (HK-2) exposed to CFH demonstrated increased cytotoxicity. Together, these results show that CFH exacerbates acute kidney injury in a mouse model of experimental sepsis, potentially through increased renal tubular injury.


Assuntos
Injúria Renal Aguda/patologia , Hemoglobinas/toxicidade , Sepse/patologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/fisiopatologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sistema Livre de Células , Citocinas/metabolismo , Feminino , Taxa de Filtração Glomerular , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Lipocalina-2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sepse/complicações , Análise de Sobrevida
16.
Lancet ; 402(10408): 1112-1113, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37598689
17.
Crit Care ; 23(1): 18, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30658667

RESUMO

BACKGROUND: Vascular endothelial cadherin (VE-cadherin) is a membrane protein that is the major component of adherens junctions between endothelial cells. It is crucial for regulating vascular integrity, endothelial permeability, and angiogenesis. During inflammatory processes, VE-cadherin is shed into circulation (sVE-cadherin). Plasma sVE-cadherin is elevated in sepsis, malignancy, autoimmune diseases, and coronary atherosclerosis. However, the relationship between specific organ failures, especially severe acute kidney injury (AKI) defined by requirement for renal replacement therapy (AKI-RRT), and plasma sVE-cadherin levels in severe sepsis has not been well studied. METHODS: The present study is a prospective study of critically ill adults with sepsis and acute respiratory failure (age ≥ 18 years) enrolled in the Validating Acute Lung Injury markers for Diagnosis (VALID) study. Plasma sVE-cadherin was measured at study enrollment. Primary analysis focused on the association between sVE-cadherin levels and the development of AKI, AKI-RRT, other organ dysfunction as defined by Brussels organ failure scores, pulmonary versus non-pulmonary sepsis, acute respiratory distress syndrome (ARDS), and in-hospital mortality. RESULTS: Of 228 severe sepsis patients included, 80 (35%) developed AKI-RRT. Plasma sVE-cadherin levels at enrollment were significantly higher in patients with AKI-RRT compared with patients without AKI-RRT (p = 0.003). Plasma sVE-cadherin levels by quartile were significantly higher in severe sepsis patients with acute kidney injury stage 3 (p = 0.044) as defined by Kidney Disease Improving Global Outcomes (KDIGO) criteria. Patients with greater than 2 organ failures had higher plasma sVE-cadherin levels than patients with 2 or fewer organ failures (p < 0.001). In a multivariable analysis, plasma sVE-cadherin was independently associated with AKI-RRT (odds ratio 6.44 per log increase in plasma sVE-cadherin, 95% CI 1.126-36.847, p = 0.036). Plasma sVE-cadherin levels were significantly higher in patients with non-pulmonary sepsis compared to pulmonary sepsis (p < 0.001). CONCLUSION: Shedding of sVE-cadherin is associated with severe acute kidney injury and with more severe organ dysfunction in patients with sepsis, suggesting that breakdown of endothelial adherens junctions may contribute to the pathogenesis of organ dysfunction in sepsis. Further studies of sVE-cadherin as a biomarker of disease severity in clinical sepsis are needed to better elucidate the role of VE-cadherin shedding in sepsis-induced severe organ dysfunction.


Assuntos
Injúria Renal Aguda/etiologia , Antígenos CD/análise , Antígenos CD/metabolismo , Caderinas/análise , Caderinas/metabolismo , Sepse/complicações , APACHE , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/fisiopatologia , Adulto , Idoso , Antígenos CD/sangue , Biomarcadores/análise , Biomarcadores/sangue , Caderinas/sangue , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Escores de Disfunção Orgânica , Estudos Prospectivos , Sepse/sangue , Sepse/fisiopatologia , Estatísticas não Paramétricas
18.
Am J Respir Crit Care Med ; 197(8): 1027-1035, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29253353

RESUMO

RATIONALE: A major barrier to a more complete understanding of acute respiratory distress syndrome (ARDS) pathophysiology is the inability to sample the distal airspace of patients with ARDS. The heat moisture exchanger (HME) filter is an inline bacteriostatic sponge that collects exhaled moisture from the lungs of mechanically ventilated patients. OBJECTIVES: To test the hypothesis that HME filter fluid (HMEF) represents the distal airspace fluid in patients with ARDS. METHODS: Samples of HMEF were collected from 37 patients with acute pulmonary edema (either from ARDS or hydrostatic causes [HYDRO; control subjects]). Concurrent undiluted pulmonary edema fluid (EF) and HMEF were collected from six patients. HMEF from 11 patients (8 ARDS and 3 HYDRO) were analyzed by liquid chromatography-coupled tandem mass spectometry. Total protein (bicinchoninic acid assay), MMP-9 (matrix metalloproteinase-9), and MPO (myeloperoxidase) (ELISA) were measured in 29 subjects with ARDS and 5 subjects with HYDRO. SP-D (surfactant protein-D), RAGE (receptor for advanced glycation end-products) (ELISA), and cytokines (IL-1ß, IL-6, IL-8, and tumor necrosis factor-α) (electrochemiluminescent assays) were measured in six concurrent HMEF and EF samples. MEASUREMENTS AND MAIN RESULTS: Liquid chromatography-coupled tandem mass spectrometry on concurrent EF and HMEF samples from four patients revealed similar base peak intensities and m/z values indicating similar protein composition. There were 21 significantly elevated proteins in HMEF from patients with ARDS versus HYDRO. Eight proteins measured in concurrent EF and HMEF from six patients were highly correlated. In HMEF, total protein and MMP-9 were significantly higher in ARDS than in HYDRO. CONCLUSIONS: These data suggest that HMEF is a novel, noninvasive method to accurately sample the distal airspace in patients with ARDS.


Assuntos
Técnicas de Diagnóstico do Sistema Respiratório , Esponja de Gelatina Absorvível , Procedimentos Cirúrgicos Minimamente Invasivos/instrumentação , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Alvéolos Pulmonares/fisiopatologia , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/fisiopatologia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
19.
Thorax ; 73(9): 840-846, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29903755

RESUMO

BACKGROUND: There is no accurate, non-invasive measurement to estimate the degree of pulmonary oedema in acute respiratory distress syndrome (ARDS). We developed the Radiographic Assessment of Lung Oedema (RALE) score to evaluate the extent and density of alveolar opacities on chest radiographs. After first comparing the RALE score to gravimetric assessment of pulmonary oedema in organ donors, we then evaluated the RALE score in patients with ARDS for its relationship to oxygenation and clinical outcomes. METHODS: We compared radiographs with excised lung weights from 72 organ donors (derivation cohort) and radiographs with clinical data from 174 patients with ARDS in the ARDSNet Fluid and Catheter Treatment Trial (validation cohort). To calculate RALE, each radiographic quadrant was scored for extent of consolidation (0-4) and density of opacification (1-3). The product of the consolidation and density scores for each of the four quadrants was summed (maximum score=48). RESULTS: Agreement between two independent reviewers for RALE score was excellent (intraclass correlation coefficient=0.93, 95% CI 0.91 to 0.95). In donors, pre-procurement RALE score correlated with height-adjusted total lung weight (ρ=0.59, p<0.001). In patients with ARDS, higher RALE scores were independently associated with lower PaO2/fractional inspired oxygen and worse survival. Conservative fluid management significantly decreased RALE score over 3 days compared with liberal fluid management. CONCLUSIONS: The RALE score can be used to assess both the extent of pulmonary oedema and the severity of ARDS, by utilising information that is already obtained routinely, safely and inexpensively in every patient with ARDS. This novel non-invasive measure should be useful for assessing ARDS severity and monitoring response to therapy.


Assuntos
Edema Pulmonar/diagnóstico por imagem , Edema Pulmonar/etiologia , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Adulto , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Edema Pulmonar/mortalidade , Radiografia , Síndrome do Desconforto Respiratório/mortalidade , Índice de Gravidade de Doença
20.
Biochem Biophys Res Commun ; 495(1): 433-437, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29129689

RESUMO

BACKGROUND: Increased endothelial permeability is central to shock and organ dysfunction in sepsis but therapeutics targeted to known mediators of increased endothelial permeability have been unsuccessful in patient studies. We previously reported that cell-free hemoglobin (CFH) is elevated in the majority of patients with sepsis and is associated with organ dysfunction, poor clinical outcomes and elevated markers of oxidant injury. Others have shown that Vitamin C (ascorbate) may have endothelial protective effects in sepsis. In this study, we tested the hypothesis that high levels of CFH, as seen in the circulation of patients with sepsis, disrupt endothelial barrier integrity. METHODS: Human umbilical vein endothelial cells (HUVEC) were grown to confluence and treated with CFH with or without ascorbate. Monolayer permeability was measured by Electric Cell-substrate Impedance Sensing (ECIS) or transfer of 14C-inulin. Viability was measured by trypan blue exclusion. Intracellular ascorbate was measured by HPLC. RESULTS: CFH increased permeability in a dose- and time-dependent manner with 1 mg/ml of CFH increasing inulin transfer by 50% without affecting cell viability. CFH (1 mg/ml) also caused a dramatic reduction in intracellular ascorbate in the same time frame (1.4 mM without CFH, 0.23 mM 18 h after 1 mg/ml CFH, p < 0.05). Pre-treatment of HUVECs with ascorbate attenuated CFH induced permeability. CONCLUSIONS: CFH increases endothelial permeability in part through depletion of intracellular ascorbate. Supplementation of ascorbate can attenuate increases in permeability mediated by CFH suggesting a possible therapeutic approach in sepsis.


Assuntos
Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Permeabilidade Capilar/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Hemoglobinas/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Sepse/tratamento farmacológico , Sepse/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA