Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Molecules ; 28(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446914

RESUMO

Acute myeloid leukemia (AML) is one of the cancers that grow most aggressively. The challenges in AML management are huge, despite many treatment options. Mutations in FLT3 tyrosine kinase receptors make the currently available therapies less responsive. Therefore, there is a need to find new lead molecules that can specifically target mutated FLT3 to block growth factor signaling and inhibit AML cell proliferation. Our previous studies on FLT3-mutated AML cells demonstrated that ß-elemene and compound 5a showed strong inhibition of proliferation by blocking the mutated FLT3 receptor and altering the key apoptotic genes responsible for apoptosis. Furthermore, we hypothesized that both ß-elemene and compound 5a could be therapeutically effective. Therefore, combining these drugs against mutated FLT3 cells could be promising. In this context, dose-matrix combination-based cellular inhibition analyses, cell morphology studies and profiling of 43 different apoptotic protein targets via combinatorial treatment were performed. Our studies provide strong evidence for the hypothesis that ß-elemene and compound 5a combination considerably increased the therapeutic potential of both compounds by enhancing the activation of several key targets implicated in AML cell death.


Assuntos
Leucemia Mieloide Aguda , Humanos , Oxindóis/farmacologia , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/metabolismo , Mutação , Apoptose , Tirosina Quinase 3 Semelhante a fms/genética , Inibidores de Proteínas Quinases/farmacologia
2.
Mol Divers ; 26(6): 3255-3277, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35224675

RESUMO

ATP-binding cassette transporter G2 (ABCG2) is an efflux transporter related to the clinical multidrug resistance (MDR) phenomenon. Identifying ABCG2 inhibitors could help discover extraordinary curative strategies for carcinoma remediation. Hitherto, there is no medication drug inhibiting ABCG2 transporter, notwithstanding that a considerable number of drugs have been submitted to clinical-trial and investigational phases. In the search for unprecedented chemical compounds that could inhibit the ABCG2 transporter, an in silico screening was conducted on the Naturally Occurring Plant-based Anticancer Compound-Activity-Target (NPACT) database containing 1574 compounds. Inhibitor-ABCG2 binding affinities were estimated based on molecular docking and molecular minimization (MM) calculations and compared to a co-crystallized inhibitor (BWQ) acting as a reference inhibitor. Molecular dynamics (MD) simulations pursued by molecular mechanics-generalized Born surface area (MM-GBSA) binding energy estimations were further executed for compounds with MM-GBSA//MM binding energies lower than BWQ (calc. - 60.5 kcal/mol). NPACT00968 and NPACT01545 demonstrated auspicious inhibitory activities according to binding affinities (ΔGbinding) over the 100 ns MD simulations that were nearly one and a half folds compared to BWQ (- 100.4, - 94.7, and - 62.9 kcal/mol, respectively). Throughout the 100 ns MD simulations, structural and energetical analyses unveiled outstanding stability of the ABCG2 transporter when bound with NPACT00968 and NPACT01545. In silico calculations hold a promise for those two inhibitors as drug candidates of ABCG2 transporter and emphasize that further in vitro and in vivo experiments are guaranteed.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Simulação de Acoplamento Molecular , Estudos Prospectivos , Antineoplásicos/química , Descoberta de Drogas
3.
J Enzyme Inhib Med Chem ; 37(1): 1464-1478, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35616297

RESUMO

Sulphonamide and 1,3,4-oxadiazole moieties are present as integral structural parts of many drugs and pharmaceuticals. Taking into account the significance of these moieties, we herein present the synthesis, single-crystal X-ray analysis, DFT studies, and α-amylase inhibition of probenecid derived two S-alkylphthalimide-oxadiazole-benzenesulfonamide hybrids. The synthesis has been accomplished in high yields. The final structures of both hybrids have been established completely with the help of different spectro-analytical techniques, including NMR, FTIR, HR-MS, and single-crystal X-ray diffraction analyses. In an effort to confirm the experimental findings, versatile quantum mechanical calculations and Hirshfeld Surface analysis have been performed. α-Amylase inhibition assay has been executed to investigate the enzyme inhibitory potential of both hybrids. The low IC50 value (76.92 ± 0.19 µg/mL) of hybrid 2 shows the good α-amylase inhibition potential of the respective compound. Ultimately, the binding affinities and features of the two hybrids are elucidated utilising a molecular docking technique against the α-amylase enzyme.


Assuntos
Oxidiazóis , alfa-Amilases , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxidiazóis/farmacologia , Probenecid , Sulfonamidas/química , Sulfonamidas/farmacologia , Difração de Raios X , Benzenossulfonamidas
4.
Int J Mol Sci ; 23(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35328534

RESUMO

In the current study, unexplored type IV halogen⋯halogen interaction was thoroughly elucidated, for the first time, and compared to the well-established types I−III interactions by means of the second-order Møller−Plesset (MP2) method. For this aim, the halobenzene⋯halobenzene homodimers (where halogen = Cl, Br, and I) were designed into four different types, parodying the considered interactions. From the energetic perspective, the preference of scouted homodimers was ascribed to type II interactions (i.e., highest binding energy), whereas the lowest binding energies were discerned in type III interactions. Generally, binding energies of the studied interactions were observed to decline with the decrease in the σ-hole size in the order, C6H5I⋯IC6H5 > C6H5Br⋯BrC6H5 > C6H5Cl⋯ClC6H5 homodimers and the reverse was noticed in the case of type IV interactions. Such peculiar observations were relevant to the ample contributions of negative-belt⋯negative-belt interactions within the C6H5Cl⋯ClC6H5 homodimer. Further, type IV torsional trans → cis interconversion of C6H5X⋯XC6H5 homodimers was investigated to quantify the π⋯π contributions into the total binding energies. Evidently, the energetic features illustrated the amelioration of the considered homodimers (i.e., more negative binding energy) along the prolonged scope of torsional trans → cis interconversion. In turn, these findings outlined the efficiency of the cis configuration over the trans analog. Generally, symmetry-adapted perturbation theory-based energy decomposition analysis (SAPT-EDA) demonstrated the predominance of all the scouted homodimers by the dispersion forces. The obtained results would be beneficial for the omnipresent studies relevant to the applications of halogen bonds in the fields of materials science and crystal engineering.


Assuntos
Halogênios , Hidrocarbonetos Halogenados , Benzeno , Halogênios/química , Modelos Teóricos
5.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361812

RESUMO

The effects of Lewis basicity and acidity on σ-hole interactions were investigated using two sets of carbon-containing complexes. In Set I, the effect of Lewis basicity was studied by substituting the X3/X atom(s) of the NC-C6H2-X3 and NCX Lewis bases (LB) with F, Cl, Br, or I. In Set II, the W-C-F3 and F-C-X3 (where X and W = F, Cl, Br, and I) molecules were utilized as Lewis acid (LA) centers. Concerning the Lewis basicity effect, higher negative interaction energies (Eint) were observed for the F-C-F3∙∙∙NC-C6H2-X3 complexes compared with the F-C-F3∙∙∙NCX analogs. Moreover, significant Eint was recorded for Set I complexes, along with decreasing the electron-withdrawing power of the X3/X atom(s). Among Set I complexes, the highest negative Eint was ascribed to the F-C-F3∙∙∙NC-C6H2-I3 complex with a value of -1.23 kcal/mol. For Set II complexes, Eint values of F-C-X3 bearing complexes were noted within the -1.05 to -2.08 kcal/mol scope, while they ranged from -0.82 to -1.20 kcal/mol for the W-C-F3 analogs. However, Vs,max quantities exhibited higher values in the case of W-C-F3 molecules compared with F-C-X3; preferable negative Eint were ascribed to the F-C-X3 bearing complexes. These findings were delineated as a consequence of the promoted contributions of the X3 substituents. Dispersion forces (Edisp) were identified as the dominant forces for these interactions. The obtained results provide a foundation for fields such as crystal engineering and supramolecular chemistry studies that focus on understanding the characteristics of carbon-bearing complexes.


Assuntos
Carbono , Bases de Lewis , Bases de Lewis/química , Ácidos de Lewis/química , Elétrons
6.
Molecules ; 27(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408463

RESUMO

Novel pyrrolo [2,3-b] pyrrole derivatives were synthesized and their hypolipidemic activity was assessed in hyperlipidemic rats. The chemical structures of the new derivatives were confirmed through spectral analysis. Compounds 5 and 6 were revealed to be the most effective hypolipidemic agents, with considerable hypocholesterolemic and hypotriglyceridemic effects. They appear to be promising candidates for creating new powerful derivatives with anti-atherosclerotic and hypolipidemic properties. As for antimicrobial activity, some of the tested compounds showed moderate activity against Pseudomonas aeruginosa: compound 2 revealed an MIC value of 50 µg/mL, compared to 25 µg/mL for ciprofloxacin. Compound 3 showed good antimicrobial activity against Staphylococcus aureus, comparable to ciprofloxacin, and roughly half the activity of ampicillin, according to MIC values. Compound 2 has an MIC approximately 25% of that of clotrimazole against Candida albicans. Compound 2 also showed the highest antioxidant activity with 59% inhibition of radical scavenging activity. Additionally, the cytotoxic activity of these new derivatives 1-7 was investigated and most of them showed good anticancer activity against the three tested cell lines.


Assuntos
Anti-Infecciosos , Pirróis , Animais , Antibacterianos/química , Anti-Infecciosos/farmacologia , Ciprofloxacina , Testes de Sensibilidade Microbiana , Micro-Ondas , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirróis/farmacologia , Ratos , Relação Estrutura-Atividade
7.
Molecules ; 27(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36557792

RESUMO

BACKGROUND: The current study utilizes in silico molecular docking/molecular dynamics to evaluate the binding affinity of apigenin and safranal with 5HT1AR/5HT2AR, followed by assessment of in vivo effects of these compounds on depressive and anxious behavior. METHODS: The docking between apigenin and safranal and the 5HT1A and 5HT2A receptors was performed utilizing AutoDock Vina software, while MD and protein-lipid molecular dynamics simulations were executed by AMBER16 software. For in vivo analysis, healthy control (HC), disease control (DC), fluoxetine-, and apigenin-safranal-treated rats were tested for changes in depression and anxiety using the forced swim test (FST) and the elevated plus-maze test (EPMT), respectively. RESULTS: The binding affinity estimations identified the superior interacting capacity of apigenin over safranal for 5HT1A/5HT2A receptors over 200 ns MD simulations. Both compounds exhibit oral bioavailability and absorbance. In the rodent model, there was a significant increase in the overall mobility time in the FST, while in the EPMT, there was a decrease in latency and an increase in the number of entries for the treated and HC rats compared with the DC rats, suggesting a reduction in depressive/anxiety symptoms after treatment. CONCLUSIONS: Our analyses suggest apigenin and safranal as prospective medication options to treat depression and anxiety.


Assuntos
Apigenina , Simulação de Dinâmica Molecular , Ratos , Animais , Simulação de Acoplamento Molecular , Apigenina/farmacologia , Depressão/tratamento farmacológico , Estudos Prospectivos , Ansiedade/tratamento farmacológico , Lipídeos
8.
Molecules ; 27(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35630581

RESUMO

The P-glycoprotein (P-gp/ABCB1) is responsible for a xenobiotic efflux pump that shackles intracellular drug accumulation. Additionally, it is included in the dud of considerable antiviral and anticancer chemotherapies because of the multidrug resistance (MDR) phenomenon. In the search for prospective anticancer drugs that inhibit the ABCB1 transporter, the Natural Product Activity and Species Source (NPASS) database, containing >35,000 molecules, was explored for identifying ABCB1 inhibitors. The performance of AutoDock4.2.6 software to anticipate ABCB1 docking score and pose was first assessed according to available experimental data. The docking scores of the NPASS molecules were predicted against the ABCB1 transporter. Molecular dynamics (MD) simulations were conducted for molecules with docking scores lower than taxol, a reference inhibitor, pursued by molecular mechanics-generalized Born surface area (MM-GBSA) binding energy estimations. On the basis of MM-GBSA calculations, five compounds revealed promising binding affinities as ABCB1 inhibitors with ΔGbinding < −105.0 kcal/mol. The binding affinity and stability of the identified inhibitors were compared to the chemotherapeutic agent. Structural and energetical analyses unveiled great steadiness of the investigated inhibitors within the ABCB1 active site throughout 100 ns MD simulations. Conclusively, these findings point out that NPC104372, NPC475164, NPC2313, NPC197736, and NPC477344 hold guarantees as potential ABCB1 drug candidates and warrant further in vitro/in vivo tests.


Assuntos
Antineoplásicos , Produtos Biológicos , Antineoplásicos/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Produtos Biológicos/farmacologia , Descoberta de Drogas , Estudos Prospectivos
9.
Molecules ; 27(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35566307

RESUMO

For the first time, σ-hole interactions within like⋯like carbon-containing complexes were investigated, in both the absence and presence of the external electric field (EEF). The effects of the directionality and strength of the utilized EEF were thoroughly unveiled in the (F-C-F3)2, (F-C-H3)2, and (H-C-F3)2 complexes. In the absence of the EEF, favorable interaction energies, with negative values, are denoted for the (F-C-F3)2 and (H-C-F3)2 complexes, whereas the (F-C-H3)2 complex exhibits unfavorable interactions. Remarkably, the strength of the applied EEF exhibits a prominent role in turning the repulsive forces within the latter complex into attractive ones. The symmetrical nature of the considered like⋯like carbon-containing complexes eradicated the effect of directionality of the EEF. The quantum theory of atoms in molecules (QTAIM), and the noncovalent interaction (NCI) index, ensured the occurrence of the attractive forces, and also outlined the substantial contributions of the three coplanar atoms to the total strength of the studied complexes. Symmetry-adapted perturbation theory (SAPT) results show the dispersion-driven nature of the interactions.


Assuntos
Carbono , Teoria Quântica , Eletricidade , Eletricidade Estática
10.
J Enzyme Inhib Med Chem ; 36(1): 1313-1333, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34154478

RESUMO

In the present study, two new series of pyrrolizines bearing 3,4,5-trimethoxyphenyl moiety were designed, synthesised, and evaluated for their cytotoxic activity. The benzamide derivatives 16a-e showed higher cytotoxicity than their corresponding Schiff bases 15a-e. Compounds 16a,b,d also inhibited the growth of MCF-7/ADR cells with IC50 in the range of 0.52-6.26 µM. Interestingly, the new compounds were less cytotoxic against normal MRC-5 cells (IC50=0.155-17.08 µM). Mechanistic studies revealed the ability of compounds 16a,b,d to inhibit tubulin polymerisation and multiple oncogenic kinases. Moreover, compounds 16a,b,d induced preG1 and G2/M cell cycle arrest and early apoptosis in MCF-7 cells. The molecular docking analyses of compounds 16a,b,d into the active site in tubulin, CDK-2, and EGFR proteins revealed higher binding affinities compared to the co-crystallised ligands. These preliminary results suggested that compounds 16a,b,d could serve as promising lead compounds for the future development of new potent anticancer agents.HighlightsTwo new series of pyrrolizines bearing 3,4,5-trimethoxyphenyl moieties were synthesized.Compounds 16a,b,d displayed the highest cytotoxicity against the three cancer cell lines.Kinase profiling test revealed inhibition of multiple oncogenic kinases by compounds 16a,b,d.Compounds 16a,b,d exhibited weak to moderate inhibition of tubulin-polymerization.Compounds 16a,b,d induced preG1 and G2/M cell cycle arrest and early apoptosis in MCF-7 cells.Docking studies revealed high binding affinities for compounds 16a,b towards tubulin and CDK-2.


Assuntos
Antineoplásicos/farmacologia , Simulação de Acoplamento Molecular/métodos , Pirazóis/química , Antineoplásicos/química , Desenho de Fármacos , Humanos , Células MCF-7 , Tubulina (Proteína)/química
11.
J Enzyme Inhib Med Chem ; 36(1): 15-33, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33103497

RESUMO

In the current study, virtual screening of a small library of 1302 pyrrolizines bearing urea/thiourea moieties was performed. The top-scoring hits were synthesised and evaluated for their cytotoxicity against three cancer (MCF-7, A2780, and HT29) and one normal (MRC-5) cell lines. The results of the MTT assay revealed potent cytotoxic activities for most of the new compounds (IC50 = 0.16-34.13 µM). The drug-likeness study revealed that all the new compounds conform to Lipinski's rule. Mechanistic studies of compounds 18 b, 19a, and 20a revealed the induction of apoptosis and cell cycle arrest at the G1 phase in MCF-7 cells. The three compounds also displayed potent inhibitory activity against CDK-2 (IC50 = 25.53-115.30 nM). Moreover, the docking study revealed a nice fitting of compound 19a into the active sites of CDK-2/6/9. These preliminary results suggested that compound 19a could serve as a promising scaffold in the discovery of new potent anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Pirróis/farmacologia , Ureia/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirróis/síntese química , Pirróis/química , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/química
12.
J Mol Struct ; 1230: 129649, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33223566

RESUMO

We report herein a new series of synthesized N-substituted-2-quinolonylacetohydrazides aiming to evaluate their activity towards SARS-CoV-2. The structures of the obtained products were fully confirmed by NMR, mass, IR spectra and elemental analysis as well. Molecular docking calculations showed that most of the tested compounds possessed good binding affinity to the SARS-CoV-2 main protease (Mpro) comparable toRemdesivir.

13.
Molecules ; 26(21)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34770832

RESUMO

In the current study, a 2D similarity/docking-based study was used to predict the potential binding modes of icotinib, almonertinib, and olmutinib into EGFR. The similarity search of icotinib, almonertinib, and olmutinib against a database of 154 EGFR ligands revealed the highest similarity scores with erlotinib (0.9333), osimertinib (0.9487), and WZ4003 (0.8421), respectively. In addition, the results of the docking study of the three drugs into EGFR revealed high binding free energies (ΔGb = -6.32 to -8.42 kcal/mol) compared to the co-crystallized ligands (ΔGb = -7.03 to -8.07 kcal/mol). Analysis of the top-scoring poses of the three drugs was done to identify their potential binding modes. The distances between Cys797 in EGFR and the Michael acceptor sites in almonertinib and olmutinib were determined. In conclusion, the results could provide insights into the potential binding characteristics of the three drugs into EGFR which could help in the design of new more potent analogs.


Assuntos
Acrilamidas/farmacologia , Éteres de Coroa/farmacologia , Indóis/farmacologia , Simulação de Acoplamento Molecular , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Quinazolinas/farmacologia , Acrilamidas/química , Sítios de Ligação/efeitos dos fármacos , Éteres de Coroa/química , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Indóis/química , Ligantes , Estrutura Molecular , Piperazinas/química , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Quinazolinas/química
14.
Molecules ; 26(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209011

RESUMO

In the current study, a simple in silico approach using free software was used with the experimental studies to optimize the antiproliferative activity and predict the potential mechanism of action of pyrrolizine-based Schiff bases. A compound library of 288 Schiff bases was designed based on compound 10, and a pharmacophore search was performed. Structural analysis of the top scoring hits and a docking study were used to select the best derivatives for the synthesis. Chemical synthesis and structural elucidation of compounds 16a-h were discussed. The antiproliferative activity of 16a-h was evaluated against three cancer (MCF7, A2780 and HT29, IC50 = 0.01-40.50 µM) and one normal MRC5 (IC50 = 1.27-24.06 µM) cell lines using the MTT assay. The results revealed the highest antiproliferative activity against MCF7 cells for 16g (IC50 = 0.01 µM) with an exceptionally high selectivity index of (SI = 578). Cell cycle analysis of MCF7 cells treated with compound 16g revealed a cell cycle arrest at the G2/M phase. In addition, compound 16g induced a dose-dependent increase in apoptotic events in MCF7 cells compared to the control. In silico target prediction of compound 16g showed six potential targets that could mediate these activities. Molecular docking analysis of compound 16g revealed high binding affinities toward COX-2, MAP P38α, EGFR, and CDK2. The results of the MD simulation revealed low RMSD values and high negative binding free energies for the two complexes formed between compound 16g with EGFR, and CDK2, while COX-2 was in the third order. These results highlighted a great potentiality for 16g to inhibit both CDK2 and EGFR. Taken together, the results mentioned above highlighted compound 16g as a potential anticancer agent.


Assuntos
Antineoplásicos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Modelos Biológicos , Simulação de Acoplamento Molecular , Pirróis , Software , Antineoplásicos/química , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29 , Humanos , Células MCF-7 , Pirróis/química , Pirróis/farmacologia , Bases de Schiff/química , Bases de Schiff/farmacologia
15.
Molecules ; 26(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34833890

RESUMO

A mild and versatile method based on Cu-catalyzed [2+3] cycloaddition (Huisgen-Meldal-Sharpless reaction) was developed to tether 3,3'-((4-(prop-2-yn-1-yloxy)phenyl)methylene)bis(4-hydroxyquinolin-2(1H)-ones) with 4-azido-2-quinolones in good yields. This methodology allowed attaching three quinolone molecules via a triazole linker with the proposed mechanism. The products are interesting precursors for their anti-proliferative activity. Compound 8g was the most active one, achieving IC50 = 1.2 ± 0.2 µM and 1.4 ± 0.2 µM against MCF-7 and Panc-1 cell lines, respectively. Moreover, cell cycle analysis of cells MCF-7 treated with 8g showed cell cycle arrest at the G2/M phase (supported by Caspase-3,8,9, Cytochrome C, BAX, and Bcl-2 studies). Additionally, significant pro-apoptotic activity is indicated by annexin V-FITC staining.


Assuntos
Química Click/métodos , Quinolonas/química , Triazóis/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cobre/química , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Células MCF-7 , Estrutura Molecular , Quinolonas/síntese química , Relação Estrutura-Atividade , Triazóis/síntese química
16.
J Mol Graph Model ; 127: 108699, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38150839

RESUMO

Improving the light-harvesting efficiency and boosting open circuit voltage are crucial challenges for enhancing the efficiency of organic solar cells. This work introduces seven new molecules (SA1-SA7) to upgrade the optoelectronic and photovoltaic properties of Q-C-F molecule-based solar cells. All recently designed molecules have the same alkyl-substituted Quinoxaline core and CPDT donor but vary in the end-capped acceptor subunits. All the investigated molecules have revealed superior properties than the model (R) by having absorbance ranging from 681 nm to 782 nm in the gaseous medium while 726 nm-861 nm in chloroform solvent, with the lowest band gap ranging from 1.91 to 2.19 eV SA1 molecule demonstrated the highest λmax (861 nm) in chloroform solvent and the lowest band gap (1.91 eV). SA2 molecule has manifested highest dipole moment (4.5089 D), lower exciton binding energy in gaseous (0.33 eV) and chloroform solvent (0.47 eV), and lower charge mobility of hole (0.0077693) and electron (0.0042470). At the same time, SA7 showed the highest open circuit voltage (1.56 eV) and fill factor (0.9166) due to solid electron-pulling acceptor moieties. From these supportive outcomes, it is inferred that our computationally investigated molecules may be promising candidates to be used in advanced versions of OSCs in the upcoming period.


Assuntos
Clorofórmio , Quinoxalinas , Elétrons , Gases , Solventes
17.
J Mol Graph Model ; 121: 108428, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36801585

RESUMO

This study focused on modeling and density functional theory (DFT) analysis of reference (AI1) and designed structures (AI11-AI15), based on the thieno-imidazole core, in order to create profitable candidates for solar cells. All the optoelectronic properties of the molecular geometries were computed using DFT and time dependent-DFT approaches. The influence of terminal acceptors on the bandgaps, absorption, hole and electron mobilities, charge transfer capabilities, fill factor, dipole moment, etc. Of the recently designed structures (AI11-AI15), as well as reference (AI1), were evaluated. Optoelectronics and chemical parameters of newly architecture geometries were shown to be superior to the cited molecule. The FMOs and DOS graphs also demonstrated that the linked acceptors remarkably improved the dispersion of charge density in the geometries under study, particularly in AI11 and AI14. Calculated values of binding energy and chemical potential confirmed the thermal stability of the molecules. All the derived geometries surpassed the AI1 (Reference) molecule in terms of maximum absorbance ranging from 492 to 532 nm (in chlorobenzene solvent) and a narrower bandgap ranging from 1.76 to 1.99eV. AI15 had the lowest exciton dissociation energy of 0.22eV as well as lowest electrons and hole dissociation energies, while AI11 and AI14 showed highest VOC, fill factor, power conversion efficiency (PCE), IP and EA (owing to presence of strong electron pulling cyano (CN) moieties at their acceptor portions and extended conjugation) than all the examined molecules, implying that they could be used to build elite solar cells with enhanced photovoltaic attributes.


Assuntos
Elétrons , Cloreto de Sódio , Teoria da Densidade Funcional , Solventes
18.
J Med Chem ; 66(1): 991-1010, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36584305

RESUMO

The pharmacologically privileged DHP derivatives were synthesized using the pragmatic multicomponent Hantzsch synthesis to screen the antidiabetic activity. Initially, the candidates were screened using an in vivo blood glucose test, where compound 8b showed the most prominent antidiabetic effect (% potency = 218%) compared to glimepiride. Then, a propositioned structure-activity relationship study was executed to reveal that longer side chains decreased the DHP's antidiabetic action. Mechanistically, compound 8b diminished ROS in ß-cells and muscle cells simultaneously, which was proved by enhanced serum biochemical markers. Also, compound 8b decreased blood glucose by α-glucosidase inhibition (IC50 = 4.48 ± 0.32 µM), compared to acarbose (7.40 ± 0.41 µM), based selectively on the plasma window of 8b. Acarbose demonstrated auspicious inhibitor activity according to the binding affinity (ΔGbinding), which was slightly lower than that of compound 8b (-54.7 and -46.8 kcal/mol, respectively). During the 100 ns molecular dynamics simulations, the structural and energetic assessments exposed the high consistency of compound 8b to bind to the α-glucosidase.


Assuntos
Hipoglicemiantes , alfa-Glucosidases , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Espécies Reativas de Oxigênio , alfa-Glucosidases/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Acarbose , Glicemia , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Estrutura Molecular
19.
RSC Adv ; 13(7): 4641-4655, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36760314

RESUMO

In the current DFT study, seven dimethoxyl-indaceno dithiophene based semiconducting acceptor molecules (ID1-ID7) are designed computationally by modifying the parent molecule (IDR). Here, based on a DFT exploration at a carefully selected level of theory, we have compiled a list of the optoelectronic properties of ID1-ID7 and IDR. In light of these results, all newly designed molecules, except ID5 have shown a bathochromic shift in their highest absorbance (λ max). ID1-ID4, ID6 and ID7 molecules have smaller band gap (E gap) and excitation energy (E x). IP of ID5 is the smallest and EA of ID1 is the largest among all others. Compared to the parent molecule, ID1-ID3 have increased electron mobility, with ID1 being the most improved in hole mobility. ID4 had the best light harvesting efficiency in this investigation, due to its strongest oscillator. The acceptor molecules' open-circuit voltages (V OC) were computed after being linked to the PTB7-Th donor molecule. Fill factor (FF) and normalized V OC of ID1-ID7 were calculated and compared to the parent molecule. Based on the outcomes of this study, the modified acceptors may be further scrutinised for empirical usage in the production of organic solar cells with enhanced photovoltaic capabilities.

20.
RSC Adv ; 13(11): 7535-7553, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36908528

RESUMO

Non-fused ring-based OSCs are an excellent choice, which is attributed to their low cost and flexibility in applications. However, developing efficient and stable non-fused ring-based OSCs is still a big challenge. In this work, with the intent to increase V oc for enhanced performance, seven new molecules derived from a pre-existing A-D-A type A3T-5 molecule are proposed. Different important optical, electronic and efficiency-related attributes of molecules are studied using the DFT approach. It is discovered that newly devised molecules possess the optimum features required to construct proficient OSCs. They possess a small band gap ranging from 2.22-2.29 eV and planar geometries. Six of seven newly proposed molecules have less excitation energy, a higher absorption coefficient and higher dipole moment than A3T-5 in both gaseous and solvent phases. The A3T-7 molecule exhibited the maximum improvement in optoelectronic properties showing the highest λ max at 697 nm and the lowest E x of 1.77 eV. The proposed molecules have lower ionization potential values, reorganization energies of electrons and interaction coefficients than the A3T-5 molecule. The V oc of six newly developed molecules is higher (V oc ranging from 1.46-1.72 eV) than that of A3T-5 (V oc = 1.55 eV). Similarly, almost all the proposed molecules except W6 exhibited improvement in fill factor compared to the A3T-5 reference. This remarkable improvement in efficiency-associated parameters (V oc and FF) proves that these molecules can be successfully used as an advanced version of terthiophene-based OSCs in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA