Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Horm Behav ; 121: 104719, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32081742

RESUMO

Aromatase catalyzes conversion of testosterone to estradiol and is expressed in a variety of tissues, including the brain. Suppression of aromatase adversely affects metabolism and physical activity behavior, but mechanisms remain uncertain. The hypothesis tested herein was that whole body aromatase deletion would cause gene expression changes in the nucleus accumbens (NAc), a brain regulating motivated behaviors such as physical activity, which is suppressed with loss of estradiol. Metabolic and behavioral assessments were performed in male and female wild-type (WT) and aromatase knockout (ArKO) mice. NAc-specific differentially expressed genes (DEGs) were identified with RNAseq, and associations between the measured phenotypic traits were determined. Female ArKO mice had greater percent body fat, reduced spontaneous physical activity (SPA), consumed less energy, and had lower relative resting energy expenditure (REE) than WT females. Such differences were not observed in ArKO males. However, in both sexes, a top DEG was Pts, a gene encoding an enzyme necessary for catecholamine (e.g., dopamine) biosynthesis. In comparing male and female WT mice, top DEGs were related to sexual development/fertility, immune regulation, obesity, dopamine signaling, and circadian regulation. SPA correlated strongly with Per3, a gene regulating circadian function, thermoregulation, and metabolism (r = -0.64, P = .002), which also correlated with adiposity (r = 0.54, P = .01). In conclusion, aromatase ablation leads to gene expression changes in NAc, which may in turn result in reduced SPA and related metabolic abnormalities. These findings may have significance to post-menopausal women and those treated with an aromatase inhibitor.


Assuntos
Aromatase/genética , Atividade Motora/genética , Núcleo Accumbens/metabolismo , Animais , Aromatase/metabolismo , Metabolismo Energético/genética , Estradiol/metabolismo , Feminino , Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Caracteres Sexuais , Testosterona/metabolismo
2.
Front Integr Neurosci ; 18: 1426219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39131599

RESUMO

The relationship between physical activity levels and feeding behaviors has been a focus of preclinical research for decades, yet this interaction has only recently been explored for potential sex differences. The aim of the present study was to isolate sex-dependent effects of voluntary wheel running (RUN) vs. sedentary locked wheel (SED) home cage conditions on palatability-driven feeding behavior using a 2-diet choice task between standard chow and a high-fat diet. The sex-dependent effects of physical activity on feeding behavior were examined following a within-subject novel reversal design of physical activity conditions (i.e., RUN > SED > RUN), to assess temporal sensitivity of the interaction. Following the final 2 weeks of reestablished and sustained RUN vs. SED conditions in separate groups of both males and females, reward-related opioid and dopamine gene expression within the nucleus accumbens (Acb) brain region were analyzed. Results demonstrated that the initial RUN > SED transition led to sex-dependent effects of SED condition, as males increased, and females decreased their high fat consumption, compared to their respective high fat consumption during previous RUN condition phase. Following reintroduction to the RUN condition, males decreased, and females increased their high fat consumption, compared to their separate SED control group. Last, sex-dependent shifts in ventral striatal opioid- and dopamine-related gene expression were observed to parallel the behavioral effects. The major findings of the study reveal that SED and RUN home cage conditions shift palatability-driven feeding in the opposite direction for males and females, these effects are sensitive to reversal, and these sex-dependent feeding behaviors track sex-dependent changes to critical reward-related gene expression patterns in the Acb. Considering the present high rates of sedentary behavior and obesity, furthering our understanding of the interaction between physical activity (or lack thereof) and feeding behavior should be a priority, especially in the context of these divergent sex-dependent outcomes.

3.
Artigo em Inglês | MEDLINE | ID: mdl-30386297

RESUMO

Diverse cognitive functions in many vertebrate species are influenced by local conversion of androgens to 17ß-estradiol (E2) by aromatase. This enzyme is highly expressed in various brain regions across species, with some inter-species variation in terms of regional brain expression. Since women with breast cancer and men and women with other disorders are often treated with aromatase inhibitors (AI), these populations might be especially vulnerable to cognitive deficits due to low neuroE2 synthesis, i.e., synthesis of E2 directly within the brain. Animal models have been useful in deciphering aromatase effects on cognitive functions. Consequences of AI administration at various life cycle stages have been assessed on auditory, song processing, and spatial memory in birds and various aspects of cognition in rodent models. Additionally, cognitive deficits have been described in aromatase knockout (ArKO) mice that systemically lack this gene throughout their lifespan. This review will consider evidence to date that AI treatment in male and female rodent models, birds, and humans results in cognitive impairments. How brain aromatase regulates cognitive function throughout the lifespan, and gaps in current knowledge will be considered, along with future directions to better define how aromatase might guide learning and memory from early development through the geriatric period. Better understanding the importance of E2 synthesis on neurobehavioral responses at various ages will likely aid in the discovery of therapeutic strategies to prevent potential cognitive deficits, including Alzheimer's Disease, in individuals treated with AI or those possessing CYP19 gene polymorphisms, as well as cognitive effects of normal aging that may be related to changes in brain aromatase activity.

4.
Front Mol Neurosci ; 11: 374, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30374289

RESUMO

Aromatase is the enzyme responsible for converting testosterone to estradiol. In mammals, aromatase is expressed in the testes, ovaries, brain, and other tissues. While estrogen is traditionally associated with reproduction and sexual behavior in females, our current understanding broadens this perspective to include such biological functions as metabolism and cognition. It is now well-recognized that aromatase plays a vital lifetime role in brain development and neurobehavioral function in both sexes. Thus, ongoing investigations seek to highlight potentially vital sex differences in the role of aromatase, particularly regarding its centrally mediated effects. To characterize the role of aromatase in mediating such functions, effects of aromatase inhibitor (AI) treatments on humans and animal models have been determined. Aromatase knockout (ArKO) mice that systemically lack the enzyme have also been employed. Humans possessing mutations in the gene encoding aromatase, CYP19, have also provided critical insight into how aromatase affects brain function in a possible sex-dependent manner. A better understanding of how AIs, used to treat breast cancer and other clinical conditions, may detrimentally affect neurobehavioral responses will likely promote development of future therapies to combat these effects. Herein, we will provide a critical review of the current knowledge of sex differences in aromatase regulation of various neurobehavioral functions. Although many species have been used to better understand the functions of aromatase, this review focuses on rodent models and humans. Critical gaps in our present understanding of this area will be considered, and important future research directions will be discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA