Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Angew Chem Int Ed Engl ; 63(22): e202402877, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38523072

RESUMO

Hyperpolarization techniques provide a dramatic increase in sensitivity of nuclear magnetic resonance spectroscopy and imaging. In spite of the outstanding progress in solution-state hyperpolarization of spin-1/2 nuclei, hyperpolarization of quadrupolar nuclei remains challenging. Here, hyperpolarization of quadrupolar 14N nuclei with natural isotopic abundance of >99 % is demonstrated. This is achieved via pairwise addition of parahydrogen to tetraalkylammonium salts with vinyl or allyl unsaturated moieties followed by a subsequent polarization transfer from 1H to 14N nuclei at high magnetic field using PH-INEPT or PH-INEPT+ radiofrequency pulse sequence. Catalyst screening identified water-soluble rhodium complex [Rh(P(m-C6H4SO3Na)3)3Cl] as the most efficient catalyst for hyperpolarization of the substrates under study, providing up to 1.3 % and up to 6.6 % 1H polarization in the cases of vinyl and allyl precursors, respectively. The performance of PH-INEPT and PH-INEPT+ pulse sequences was optimized with respect to interpulse delays, and the resultant experimental dependences were in good agreement with simulations. As a result, 14N NMR signal enhancement of up to 760-fold at 7.05 T (corresponding to 0.15 % 14N polarization) was obtained.

2.
Molecules ; 28(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36770865

RESUMO

The present work investigates the potential for enhancing the NMR signals of DNA nucleobases by parahydrogen-based hyperpolarization. Signal amplification by reversible exchange (SABRE) and SABRE in Shield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) of selected DNA nucleobases is demonstrated with the enhancement (ε) of 1H, 15N, and/or 13C spins in 3-methyladenine, cytosine, and 6-O-guanine. Solutions of the standard SABRE homogenous catalyst Ir(1,5-cyclooctadeine)(1,3-bis(2,4,6-trimethylphenyl)imidazolium)Cl ("IrIMes") and a given nucleobase in deuterated ethanol/water solutions yielded low 1H ε values (≤10), likely reflecting weak catalyst binding. However, we achieved natural-abundance enhancement of 15N signals for 3-methyladenine of ~3300 and ~1900 for the imidazole ring nitrogen atoms. 1H and 15N 3-methyladenine studies revealed that methylation of adenine affords preferential binding of the imidazole ring over the pyrimidine ring. Interestingly, signal enhancements (ε~240) of both 15N atoms for doubly labelled cytosine reveal the preferential binding of specific tautomer(s), thus giving insight into the matching of polarization-transfer and tautomerization time scales. 13C enhancements of up to nearly 50-fold were also obtained for this cytosine isotopomer. These efforts may enable the future investigation of processes underlying cellular function and/or dysfunction, including how DNA nucleobase tautomerization influences mismatching in base-pairing.


Assuntos
Imidazóis , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Isótopos de Nitrogênio/química , DNA
3.
Anal Chem ; 93(24): 8476-8483, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34102835

RESUMO

We report on a robust and low-cost parahydrogen generator design employing liquid nitrogen as a coolant. The core of the generator consists of catalyst-filled spiral copper tubing, which can be pressurized to 35 atm. Parahydrogen fraction >48% was obtained at 77 K with three nearly identical generators using paramagnetic hydrated iron oxide catalysts. Parahydrogen quantification was performed on the fly via benchtop NMR spectroscopy to monitor the signal from residual orthohydrogen-parahydrogen is NMR silent. This real-time quantification approach was also used to evaluate catalyst activation at up to 1.0 standard liter per minute flow rate. The reported inexpensive device can be employed for a wide range of studies employing parahydrogen as a source of nuclear spin hyperpolarization. To this end, we demonstrate the utility of this parahydrogen generator for hyperpolarization of concentrated sodium [1-13C]pyruvate, a metabolic contrast agent under investigation in numerous clinical trials. The reported pilot optimization of SABRE-SHEATH (signal amplification by reversible exchange-shield enables alignment transfer to heteronuclei) hyperpolarization yielded 13C signal enhancement of over 14,000-fold at a clinically relevant magnetic field of 1 T corresponding to approximately 1.2% 13C polarization-if near 100% parahydrogen would have been employed, the reported value would be tripled to 13C polarization of 3.5%.


Assuntos
Imageamento por Ressonância Magnética , Nitrogênio , Campos Magnéticos , Espectroscopia de Ressonância Magnética , Isótopos de Nitrogênio
4.
Chemistry ; 27(38): 9727-9736, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-33856077

RESUMO

NMR hyperpolarization techniques enhance nuclear spin polarization by several orders of magnitude resulting in corresponding sensitivity gains. This enormous sensitivity gain enables new applications ranging from studies of small molecules by using high-resolution NMR spectroscopy to real-time metabolic imaging in vivo. Several hyperpolarization techniques exist for hyperpolarization of a large repertoire of nuclear spins, although the 13 C and 15 N sites of biocompatible agents are the key targets due to their widespread use in biochemical pathways. Moreover, their long T1 allows hyperpolarized states to be retained for up to tens of minutes. Signal amplification by reversible exchange (SABRE) is a low-cost and ultrafast hyperpolarization technique that has been shown to be versatile for the hyperpolarization of 15 N nuclei. Although large sensitivity gains are enabled by hyperpolarization, 15 N natural abundance is only ∼0.4 %, so isotopic labeling of the molecules to be hyperpolarized is required in order to take full advantage of the hyperpolarized state. Herein, we describe selected advances in the preparation of 15 N-labeled compounds with the primary emphasis on using these compounds for SABRE polarization in microtesla magnetic fields through spontaneous polarization transfer from parahydrogen. Also, these principles can certainly be applied for hyperpolarization of these emerging contrast agents using dynamic nuclear polarization and other techniques.


Assuntos
Campos Magnéticos , Imageamento por Ressonância Magnética , Marcação por Isótopo , Espectroscopia de Ressonância Magnética , Imagem Molecular
5.
Chemphyschem ; 22(13): 1389-1396, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33929077

RESUMO

Magnetic resonance imaging of [1-13 C]hyperpolarized carboxylates (most notably, [1-13 C]pyruvate) allows one to visualize abnormal metabolism in tumors and other pathologies. Herein, we investigate the efficiency of 1 H and 13 C hyperpolarization of acetate and pyruvate esters with ethyl, propyl and allyl alcoholic moieties using heterogeneous hydrogenation of corresponding vinyl, allyl and propargyl precursors in isotopically unlabeled and 1-13 C-enriched forms with parahydrogen over Rh/TiO2 catalysts in methanol-d4 and in D2 O. The maximum obtained 1 H polarization was 0.6±0.2 % (for propyl acetate in CD3 OD), while the highest 13 C polarization was 0.10±0.03 % (for ethyl acetate in CD3 OD). Hyperpolarization of acetate esters surpassed that of pyruvates, while esters with a triple carbon-carbon bond in unsaturated alcoholic moiety were less efficient as parahydrogen-induced polarization precursors than esters with a double bond. Among the compounds studied, the maximum 1 H and 13 C NMR signal intensities were observed for propyl acetate. Ethyl acetate yielded slightly less intense NMR signals which were dramatically greater than those of other esters under study.

6.
Chemistry ; 25(37): 8829-8836, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30964568

RESUMO

The NMR hyperpolarization of uniformly 15 N-labeled [15 N3 ]metronidazole is demonstrated by using SABRE-SHEATH. In this antibiotic, the 15 NO2 group is hyperpolarized through spin relays created by 15 N spins in [15 N3 ]metronidazole, and the polarization is transferred from parahydrogen-derived hydrides over six chemical bonds. In less than a minute of parahydrogen bubbling at approximately 0.4 µT, a high level of nuclear spin polarization (P15N ) of around 16 % is achieved on all three 15 N sites. This product of 15 N polarization and concentration of 15 N spins is around six-fold better than any previous value determined for 15 N SABRE-derived hyperpolarization. At 1.4 T, the hyperpolarized state persists for tens of minutes (relaxation time, T1 ≈10 min). A novel synthesis of uniformly 15 N-enriched metronidazole is reported with a yield of 15 %. This approach can potentially be used for synthesis of a wide variety of in vivo metabolic probes with potential uses ranging from hypoxia sensing to theranostic imaging.

7.
J Labelled Comp Radiopharm ; 62(13): 892-902, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30537260

RESUMO

A robust medium-scale (approximately 3 g) synthetic method for 15 N labeling of pyridine (15 N-Py) is reported based on the Zincke reaction. 15 N enrichment in excess of 81% was achieved with approximately 33% yield. 15 N-Py serves as a standard substrate in a wide range of studies employing a hyperpolarization technique for efficient polarization transfer from parahydrogen to heteronuclei; this technique, called SABRE (signal amplification by reversible exchange), employs a simultaneous chemical exchange of parahydrogen and a to-be-hyperpolarized substrate (e.g., pyridine) on metal centers. In studies aimed at the development of hyperpolarized contrast agents for in vivo molecular imaging, pyridine is often employed either as a model substrate (for hyperpolarization technique development, quality assurance, and phantom imaging studies) or as a co-substrate to facilitate more efficient hyperpolarization of a wide range of emerging contrast agents (e.g., nicotinamide). Here, the produced 15 N-Py was used for the feasibility study of spontaneous 15 N hyperpolarization at high magnetic (HF) fields (7 T and 9.4 T) of an NMR spectrometer and an MRI scanner. SABRE hyperpolarization enabled acquisition of 2D MRI imaging of catalyst-bound 15 N-pyridine with 75 × 75 mm2 field of view (FOV), 32 × 32 matrix size, demonstrating the feasibility of 15 N HF-SABRE molecular imaging with 2.4 × 2.4 mm2 spatial resolution.


Assuntos
Compostos Heterocíclicos/química , Compostos Heterocíclicos/síntese química , Isótopos de Nitrogênio/química , Técnicas de Química Sintética
8.
Angew Chem Int Ed Engl ; 57(35): 11140-11162, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-29484795

RESUMO

Magnetic resonance (MR) is one of the most versatile and useful physical effects used for human imaging, chemical analysis, and the elucidation of molecular structures. However, its full potential is rarely used, because only a small fraction of the nuclear spin ensemble is polarized, that is, aligned with the applied static magnetic field. Hyperpolarization methods seek other means to increase the polarization and thus the MR signal. A unique source of pure spin order is the entangled singlet spin state of dihydrogen, parahydrogen (pH2 ), which is inherently stable and long-lived. When brought into contact with another molecule, this "spin order on demand" allows the MR signal to be enhanced by several orders of magnitude. Considerable progress has been made in the past decade in the area of pH2 -based hyperpolarization techniques for biomedical applications. It is the goal of this Review to provide a selective overview of these developments, covering the areas of spin physics, catalysis, instrumentation, preparation of the contrast agents, and applications.


Assuntos
Meios de Contraste/química , Hidrogênio/química , Imageamento por Ressonância Magnética/métodos , Animais , Catálise , Humanos , Campos Magnéticos , Imageamento por Ressonância Magnética/instrumentação
9.
J Am Chem Soc ; 139(23): 7761-7767, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28443329

RESUMO

Signal amplification by reversible exchange (SABRE) is an inexpensive, fast, and even continuous hyperpolarization technique that uses para-hydrogen as hyperpolarization source. However, current SABRE faces a number of stumbling blocks for translation to biochemical and clinical settings. Difficulties include inefficient polarization in water, relatively short-lived 1H-polarization, and relatively limited substrate scope. Here we use a water-soluble polarization transfer catalyst to hyperpolarize nitrogen-15 in a variety of molecules with SABRE-SHEATH (SABRE in shield enables alignment transfer to heteronuclei). This strategy works in pure H2O or D2O solutions, on substrates that could not be hyperpolarized in traditional 1H-SABRE experiments, and we record 15N T1 relaxation times of up to 2 min.


Assuntos
Hidrogênio/química , Isótopos de Nitrogênio/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Água/química
10.
Chemphyschem ; 18(15): 1961-1965, 2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-28557156

RESUMO

Fluorine-19 has high NMR detection sensitivity-similar to that of protons-owing to its large gyromagnetic ratio and high natural abundance (100 %). Unlike protons, however, fluorine-19 (19 F) has a negligible occurrence in biological objects, as well as a more sensitive chemical shift. As a result, in vivo 19 F NMR spectroscopy and MR imaging offer advantages of negligible background signal and sensitive reporting of the local molecular environment. Here we report on NMR hyperpolarization of 19 F nuclei using reversible exchange reactions with parahydrogen gas as the source of nuclear spin order. NMR signals of 3-fluoropyridine were enhanced by ≈100 fold, corresponding to 0.3 % 19 F nuclear spin polarization (at 9.4 T), using about 50 % parahydrogen. While future optimization efforts will likely significantly increase the hyperpolarization levels, we already demonstrate the utility of 19 F hyperpolarization for high-resolution hyperpolarized 19 F imaging and hyperpolarized 19 F pH sensing.


Assuntos
Hidrogênio/química , Imagem Molecular , Flúor/química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética
11.
Chemphyschem ; 18(12): 1493-1498, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28517362

RESUMO

Nuclear spin hyperpolarization techniques are revolutionizing the field of 13 C molecular MRI. While dissolution dynamic nuclear polarization (d-DNP) is currently the leading technique, it is generally slow (requiring ≈1 h) and costly (≈$USD106 ). As a consequence of carbon's central place in biochemistry, tremendous progress using 13 C d-DNP bioimaging has been demonstrated to date including a number of clinical trials. Despite numerous attempts to develop alternatives to d-DNP, the competing methods have faced significant translational challenges. Efficient hyperpolarization of 15 N, 31 P, and other heteronuclei using signal amplification by reversible exchange (SABRE) has been reported in 2015, but extension of this technique to 13 C has proven to be challenging. Here, we present efficient hyperpolarization of 13 C nuclei using micro-Tesla SABRE. Up to ca. 6700-fold enhancement of nuclear spin polarization at 8.45 T is achieved within seconds, corresponding to P13C ≈4.4 % using 50 % parahydrogen (P13C >14 % would be feasible using more potent ≈100 % parahydrogen). Importantly, the 13 C polarization achieved via SABRE strongly depends not only upon spin-lattice relaxation, but also upon the presence of 15 N (I=1/2) versus quadrupolar 14 N (I=1) spins in the site binding the hexacoordinate Ir atom of the catalytic complex. We show that different 13 C nuclei in the test molecular frameworks-pyridine and acetonitrile-can be hyperpolarized, including 13 C sites up to five chemical bonds away from the exchangeable hydrides. The presented approach is highly scalable and can be applied to a rapidly growing number of biomolecules amendable to micro-Tesla SABRE.


Assuntos
Imageamento por Ressonância Magnética , Compostos Organometálicos/química , Piridinas/química , Isótopos de Carbono , Isótopos de Nitrogênio , Compostos Organometálicos/síntese química
12.
J Am Chem Soc ; 138(26): 8080-3, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27321159

RESUMO

Direct NMR hyperpolarization of naturally abundant (15)N sites in metronidazole is demonstrated using SABRE-SHEATH (Signal Amplification by Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei). In only a few tens of seconds, nuclear spin polarization P(15)N of up to ∼24% is achieved using parahydrogen with 80% para fraction corresponding to P(15)N ≈ 32% if ∼100% parahydrogen were employed (which would translate to a signal enhancement of ∼0.1-million-fold at 9.4 T). In addition to this demonstration on the directly binding (15)N site (using J(2)H-(15)N), we also hyperpolarized more distant (15)N sites in metronidazole using longer-range spin-spin couplings (J(4)H-(15)N and J(5)H-(15)N). Taken together, these results significantly expand the range of molecular structures and sites amenable to hyperpolarization via low-cost parahydrogen-based methods. In particular, hyperpolarized nitroimidazole and its derivatives have powerful potential applications such as direct in vivo imaging of mechanisms of action or hypoxia sensing.


Assuntos
Antibacterianos/química , Metronidazol/química , Sondas Moleculares/química , Hipóxia Tumoral , Antibacterianos/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Metronidazol/metabolismo , Sondas Moleculares/metabolismo
13.
Anal Chem ; 88(16): 8279-88, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27478927

RESUMO

An open-source hyperpolarizer producing (13)C hyperpolarized contrast agents using parahydrogen induced polarization (PHIP) for biomedical and other applications is presented. This PHIP hyperpolarizer utilizes an Arduino microcontroller in conjunction with a readily modified graphical user interface written in the open-source processing software environment to completely control the PHIP hyperpolarization process including remotely triggering an NMR spectrometer for efficient production of payloads of hyperpolarized contrast agent and in situ quality assurance of the produced hyperpolarization. Key advantages of this hyperpolarizer include: (i) use of open-source software and hardware seamlessly allowing for replication and further improvement as well as readily customizable integration with other NMR spectrometers or MRI scanners (i.e., this is a multiplatform design), (ii) relatively low cost and robustness, and (iii) in situ detection capability and complete automation. The device performance is demonstrated by production of a dose (∼2-3 mL) of hyperpolarized (13)C-succinate with %P13C ∼ 28% and 30 mM concentration and (13)C-phospholactate at %P13C ∼ 15% and 25 mM concentration in aqueous medium. These contrast agents are used for ultrafast molecular imaging and spectroscopy at 4.7 and 0.0475 T. In particular, the conversion of hyperpolarized (13)C-phospholactate to (13)C-lactate in vivo is used here to demonstrate the feasibility of ultrafast multislice (13)C MRI after tail vein injection of hyperpolarized (13)C-phospholactate in mice.


Assuntos
Meios de Contraste/metabolismo , Hidrogênio/química , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Animais , Automação , Isótopos de Carbono/química , Catálise , Meios de Contraste/química , Ácido Láctico/metabolismo , Camundongos , Camundongos Nus , Software , Succinatos/química , Succinatos/metabolismo , Água/química
14.
Bioconjug Chem ; 27(4): 878-82, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-26999571

RESUMO

Nicotinamide (a vitamin B3 amide) is one of the key vitamins as well as a drug for treatment of M. tuberculosis, HIV, cancer, and other diseases. Here, an improved Zincke reaction methodology is presented allowing for straightforward and scalable synthesis of nicotinamide-1-(15)N with an excellent isotopic purity (98%) and good yield (55%). (15)N nuclear spin label in nicotinamide-1-(15)N can be NMR hyperpolarized in seconds using parahydrogen gas. NMR hyperpolarization using the process of temporary conjugation between parahydrogen and to-be-hyperpolarized biomolecule on hexacoordinate iridium complex via the Signal Amplification By Reversible Exchange (SABRE) method significantly increases detection sensitivity (e.g., >20,000-fold for nicotinamide-1-(15)N at 9.4 T) as has been shown by Theis T. et al. (J. Am. Chem. Soc. 2015, 137, 1404), and hyperpolarized in this fashion, nicotinamide-1-(15)N can be potentially used to probe metabolic processes in vivo in future studies. Moreover, the presented synthetic methodology utilizes mild reaction conditions, and therefore can also be potentially applied to synthesis of a wide range of (15)N-enriched N-heterocycles that can be used as hyperpolarized contrast agents for future in vivo molecular imaging studies.


Assuntos
Hidrogênio/química , Espectroscopia de Ressonância Magnética/métodos , Niacinamida/síntese química , Isótopos de Nitrogênio/química , Marcadores de Spin
15.
Chemistry ; 22(46): 16446-16449, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27607402

RESUMO

A supported metal catalyst was designed, characterized, and tested for aqueous phase heterogeneous hydrogenation of vinyl acetate with parahydrogen to produce 13 C-hyperpolarized ethyl acetate for potential biomedical applications. The Rh/TiO2 catalyst with a metal loading of 23.2 wt % produced strongly hyperpolarized 13 C-enriched ethyl acetate-1-13 C detected at 9.4 T. An approximately 14-fold 13 C signal enhancement was detected using circa 50 % parahydrogen gas without taking into account relaxation losses before and after polarization transfer by magnetic field cycling from nascent parahydrogen-derived protons to 13 C nuclei. This first observation of 13 C PHIP-hyperpolarized products over a supported metal catalyst in an aqueous medium opens up new possibilities for production of catalyst-free aqueous solutions of nontoxic hyperpolarized contrast agents for a wide range of biomolecules amenable to the parahydrogen induced polarization by side arm hydrogenation (PHIP-SAH) approach.

16.
Angew Chem Int Ed Engl ; 55(20): 6071-4, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27061815

RESUMO

A scalable and versatile methodology for production of vinylated carboxylic compounds with (13) C isotopic label in C1 position is described. It allowed synthesis of vinyl acetate-1-(13) C, which is a precursor for preparation of (13) C hyperpolarized ethyl acetate-1-(13) C, which provides a convenient vehicle for potential in vivo delivery of hyperpolarized acetate to probe metabolism in living organisms. Kinetics of vinyl acetate molecular hydrogenation and polarization transfer from para-hydrogen to (13) C via magnetic field cycling were investigated. Nascent proton nuclear spin polarization (%PH ) of ca. 3.3 % and carbon-13 polarization (%P13C ) of ca. 1.8 % were achieved in ethyl acetate utilizing 50 % para-hydrogen corresponding to ca. 50 % polarization transfer efficiency. The use of nearly 100% para-hydrogen and the improvements of %PH of para-hydrogen-nascent protons may enable production of (13) C hyperpolarized contrast agents with %P13C of 20-50 % in seconds using this chemistry.


Assuntos
Acetatos/síntese química , Hidrogênio/química , Acetatos/química , Isótopos de Carbono/química , Catálise , Complexos de Coordenação/química , Marcação por Isótopo , Espectroscopia de Ressonância Magnética , Ródio/química
17.
J Am Chem Soc ; 137(4): 1404-7, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25583142

RESUMO

Parahydrogen is demonstrated to efficiently transfer its nuclear spin hyperpolarization to nitrogen-15 in pyridine and nicotinamide (vitamin B(3) amide) by conducting "signal amplification by reversible exchange" (SABRE) at microtesla fields within a magnetic shield. Following transfer of the sample from the magnetic shield chamber to a conventional NMR spectrometer, the (15)N NMR signals for these molecules are enhanced by ∼30,000- and ∼20,000-fold at 9.4 T, corresponding to ∼10% and ∼7% nuclear spin polarization, respectively. This method, dubbed "SABRE in shield enables alignment transfer to heteronuclei" or "SABRE-SHEATH", promises to be a simple, cost-effective way to hyperpolarize heteronuclei. It may be particularly useful for in vivo applications because of longer hyperpolarization lifetimes, lack of background signal, and facile chemical-shift discrimination of different species.


Assuntos
Hidrogênio/química , Niacinamida/química , Isótopos de Nitrogênio/análise , Piridinas/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares
18.
J Am Chem Soc ; 136(9): 3322-5, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24528143

RESUMO

(1)H NMR signal amplification by reversible exchange (SABRE) was observed for pyridine and pyridine-d5 at 9.4 T, a field that is orders of magnitude higher than what is typically utilized to achieve the conventional low-field SABRE effect. In addition to emissive peaks for the hydrogen spins at the ortho positions of the pyridine substrate (both free and bound to the metal center), absorptive signals are observed from hyperpolarized orthohydrogen and Ir-complex dihydride. Real-time kinetics studies show that the polarization build-up rates for these three species are in close agreement with their respective (1)H T1 relaxation rates at 9.4 T. The results suggest that the mechanism of the substrate polarization involves cross-relaxation with hyperpolarized species in a manner similar to the spin-polarization induced nuclear Overhauser effect. Experiments utilizing pyridine-d5 as the substrate exhibited larger enhancements as well as partial H/D exchange for the hydrogen atom in the ortho position of pyridine and concomitant formation of HD molecules. While the mechanism of polarization enhancement does not explicitly require chemical exchange of hydrogen atoms of parahydrogen and the substrate, the partial chemical modification of the substrate via hydrogen exchange means that SABRE under these conditions cannot rigorously be referred to as a non-hydrogenative parahydrogen induced polarization process.


Assuntos
Campos Magnéticos , Espectroscopia de Ressonância Magnética/métodos , Piridinas/química , Estudos de Viabilidade , Cinética
19.
Anal Chem ; 86(12): 5601-5, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24738968

RESUMO

The synthetic protocol for preparation of 1-(13)C-phosphoenolpyruvate-d2, precursor for parahydrogen-induced polarization (PHIP) of 1-(13)C-phospholactate-d2, is reported. (13)C nuclear spin polarization of 1-(13)C-phospholactate-d2 was increased by >30,000,000-fold (5.75 mT) in water. The reported (13)C polarization level approaching unity (>15.6%), long lifetime of (13)C hyperpolarized 1-(13)C-phospholactate-d2 (58 ± 4 s versus 36 ± 2 s for nondeuterated form at 47.5 mT), and large production quantities (52 µmoles in 3 mL) in aqueous medium make this compound useful as a potential contrast agent for the molecular imaging of metabolism and other applications.


Assuntos
Hidrogênio/química , Lactatos/química , Espectroscopia de Prótons por Ressonância Magnética/métodos , Água/química
20.
Anal Chem ; 86(13): 6192-6, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24918975

RESUMO

Parahydrogen-induced polarization (PHIP) was used to demonstrate the concept that highly polarized, catalyst-free fluids can be obtained in a catalysis-free regime using a chemical reaction with molecular addition of parahydrogen to a water-soluble Rh(I) complex carrying a payload of compound with unsaturated (C═C) bonds. Hydrogenation of norbornadiene leads to formation of norbornene, which is eliminated from the Rh(I) complex and, therefore, leaves the aqueous phase and becomes a gaseous hyperpolarized molecule. The Rh(I) metal complex resides in the original liquid phase, while the product of hydrogen addition is found exclusively in the gaseous phase based on the affinity. Hyperpolarized norbornene (1)H NMR signals observed in situ were enhanced by a factor of approximately 10,000 at a static field of 47.5 mT. High-resolution (1)H NMR at a field of 9.4 T was used for ex situ detection of hyperpolarized norbornene in the gaseous phase, where a signal enhancement factor of approximately 160 was observed. This concept of stoichiometric as opposed to purely catalytic use of PHIP-available complexes with an unsaturated payload precursor molecule can be extended to other contrast agents for both homogeneous and heterogeneous PHIP. The Rh(I) complex was employed in aqueous medium suitable for production of hyperpolarized contrast agents for biomedical use. Detection of PHIP hyperpolarized gas by low-field NMR is demonstrated here for the first time.


Assuntos
Complexos de Coordenação/química , Gases/química , Hidrogênio/química , Ródio/química , Desenho de Equipamento , Hidrogenação , Espectroscopia de Ressonância Magnética/instrumentação , Norbornanos/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA