Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 27(31): 8185-8194, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33772902

RESUMO

Numerous additives are used in the electrolytes of lithium-ion batteries, especially for the formation of an efficient solid electrolyte interphase at the surface of the electrodes. Understanding the degradation processes of these compounds is thus important; they can be seen through radiolysis. In the case of fluoroethylene carbonate (FEC), picosecond pulse radiolysis experiments evidenced the formation of FEC.- . This radical is stabilized in neat FEC, whereas the ring opens to form more stable radical anions when FEC is a solute in other solvents, as confirmed by quantum chemistry calculations. In neat FEC, pre-solvated electrons primarily undergo attachment rather than solvation. On long timescales, the gases produced (H2 , CO, and CO2 ) were quantified. A reaction scheme for both the oxidizing and reducing pathways at stake in irradiated FEC is proposed. This work shows that the nature of the primary species formed in FEC depends on the amount of FEC in the solution.

2.
Phys Chem Chem Phys ; 23(46): 26494-26500, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34806743

RESUMO

Metal nanoparticles can catalyze reactions involving organic free radicals. From the first studies focused on the catalytic reduction of water by free radicals until today, the catalytic oxidation of organic radicals has not received attention. In this work, we present the results on the catalytic activity of gold nanoparticles in the oxidation of 2-propanol to acetone and acetanilide hydroxylation during water radiolysis. A detailed reaction mechanism of α-hydroxyisopropyl radical oxidation is discussed, explaining the increase in acetone formation by ca. 340% in the presence of gold nanoparticles. In the case of acetanilide hydroxylation in the presence of nanoparticles, a strong effect of oxygen in the reaction mechanism was observed: the increase in the oxygen concentration from 0 to 1.22 mM leads to a 40-fold decrease in hydroxylation product formation. This observation is unexpected since, in the absence of gold nanoparticles, oxygen stimulates hydroxylation reactions. We propose that in the presence of both oxygen and nanoparticles, oxygen attaches first to acetanilide OH-adducts, and then nanoparticles catalyze the oxidation of peroxyl type radicals, which does not lead to the formation of hydroxylation products.

3.
Chemistry ; 26(43): 9407, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32567105

RESUMO

Invited for the cover of this issue are the groups of Roman Dembinski, Mehran Mostafavi, and Amitava Adhikary at the Polish Academy of Sciences, Université Paris-Saclay, and Oakland University. The image depicts a doughnut as a way of illustrating the hole transfer process. Read the full text of the article at 10.1002/chem.202000247.


Assuntos
Nucleosídeos/química , Fosfatos/química
4.
Chemistry ; 26(43): 9495-9505, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32059063

RESUMO

The directionality of the hole-transfer processes between DNA backbone and base was investigated by using phosphorodithioate [P(S- )=S] components. ESR spectroscopy in homogeneous frozen aqueous solutions and pulse radiolysis in aqueous solution at ambient temperature confirmed initial formation of G.+ -P(S- )=S. The ionization potential of G-P(S- )=S was calculated to be slightly lower than that of guanine in 5'-dGMP. Subsequent thermally activated hole transfer from G.+ to P(S- )=S led to dithiyl radical (P-2S. ) formation on the µs timescale. In parallel, ESR spectroscopy, pulse radiolysis, and density functional theory (DFT) calculations confirmed P-2S. formation in an abasic phosphorodithioate model compound. ESR investigations at low temperatures and higher G-P(S- )=S concentrations showed a bimolecular conversion of P-2S. to the σ2 -σ*1 -bonded dimer anion radical [-P-2S - . 2S-P-]- [ΔG (150 K, DFT)=-7.2 kcal mol-1 ]. However, [-P-2S - . 2S-P-]- formation was not observed by pulse radiolysis [ΔG° (298 K, DFT)=-1.4 kcal mol-1 ]. Neither P-2S. nor [-P-2S - . 2S-P-]- oxidized guanine base; only base-to-backbone hole transfer occurs in phosphorodithioate.


Assuntos
Ânions/química , DNA/química , Guanina/química , Nucleosídeos/química , Fosfatos/química , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Radiólise de Impulso , Água/química
5.
RSC Adv ; 13(13): 8557-8563, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936851

RESUMO

In this work, the mechanism of dioxygen reduction catalysed by gold nanoparticles (AuNPs) by two electron donors was investigated, i.e., by sodium ascorbate and hydroethidine, focusing on potential ROS (reactive oxygen species) formation, such as O2˙- and H2O2. According to our results, when AuNPs catalyse the reduction of O2, ROS are formed only as intermediates on the surface of nanoparticles, and they are unavoidably reduced to water, catalysed by the AuNPs. Thus, the statement on ROS production in the presence of AuNPs often reported in the literature is excessive. The AuNPs can catalyze the oxidation of electron donors in the cell, e.g., antioxidants causing oxidative stress. Therefore we propose that when explaining damage in the living cells observed in the presence of AuNP, the catalysis of redox reactions by AuNPs must be considered.

6.
J Phys Chem B ; 126(2): 430-442, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34990129

RESUMO

This work shows that S atom substitution in phosphate controls the directionality of hole transfer processes between the base and sugar-phosphate backbone in DNA systems. The investigation combines synthesis, electron spin resonance (ESR) studies in supercooled homogeneous solution, pulse radiolysis in aqueous solution at ambient temperature, and density functional theory (DFT) calculations of in-house synthesized model compound dimethylphosphorothioate (DMTP(O-)═S) and nucleotide (5'-O-methoxyphosphorothioyl-2'-deoxyguanosine (G-P(O-)═S)). ESR investigations show that DMTP(O-)═S reacts with Cl2•- to form the σ2σ*1 adduct radical -P-S[Formula: see text]Cl, which subsequently reacts with DMTP(O-)═S to produce [-P-S[Formula: see text]S-P-]-. -P-S[Formula: see text]Cl in G-P(O-)═S undergoes hole transfer to Gua, forming the cation radical (G•+) via thermally activated hopping. However, pulse radiolysis measurements show that DMTP(O-)═S forms the thiyl radical (-P-S•) by one-electron oxidation, which did not produce [-P-S[Formula: see text]S-P-]-. Gua in G-P(O-)═S is oxidized unimolecularly by the -P-S• intermediate in the sub-picosecond range. DFT thermochemical calculations explain the differences in ESR and pulse radiolysis results obtained at different temperatures.


Assuntos
DNA , Fosfatos , DNA/química , Fosfatos/química , Radiólise de Impulso , Açúcares , Enxofre
7.
Nanomaterials (Basel) ; 11(3)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799351

RESUMO

The ability of gold nanoparticles (AuNPs) to catalyze reactions involving radicals is poorly studied. However, AuNPs are used in applications where chemical reactions involving transient radicals occur. Herein, we investigate AuNPs' catalytic effect on 2-propanol oxidation and acetanilide hydroxylation in aqueous solutions under ionizing radiation at room temperature. In both cases, the presence of AuNPs led to selective oxidation of organic radicals, significantly changing the products' composition and ratio. Based on these observations, we stress how AuNPs' catalytic activity can affect the correctness of reactive oxygen species concentration determination utilizing organic dyes. We also provide a discussion on the role of AuNPs' catalytic activity in the radiosensitization effect actively studied for radiotherapy.

8.
Nanoscale ; 13(5): 3092-3105, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33522536

RESUMO

Imogolite nanotubes are potentially promising co-photocatalysts because they are predicted to have curvature-induced, efficient electron-hole pair separation. This prediction has however not yet been experimentally proven. Here, we investigated the behavior upon irradiation of these inorganic nanotubes as a function of their water content to understand the fate of the generated electrons and holes. Two types of aluminosilicate nanotubes were studied: one was hydrophilic on its external and internal surfaces (IMO-OH) and the other had a hydrophobic internal cavity due to Si-CH3 bonds (IMO-CH3), with the external surface remaining hydrophilic. Picosecond pulse radiolysis experiments demonstrated that the electrons are efficiently driven outward. For imogolite samples with very few external water molecules (around 1% of the total mass), quasi-free electrons were formed. They were able to attach to a water molecule, generating a water radical anion, which ultimately led to dihydrogen. When more external water molecules were present, solvated electrons, precursors of dihydrogen, were formed. In contrast, holes moved towards the internal surface of the tubes. They mainly led to the formation of dihydrogen and of methane in irradiated IMO-CH3. The attachment of the quasi-free electron to water was a very efficient process and accounted for the high dihydrogen production at low relative humidity values. When the water content increased, electron solvation dominated over attachment to water molecules. Electron solvation led to dihydrogen production, albeit to a lesser extent than quasi-free electrons. Our experiments demonstrated the spontaneous curvature-induced charge separation in these inorganic nanotubes, making them very interesting potential co-photocatalysts.

9.
Nanomaterials (Basel) ; 10(12)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321905

RESUMO

Gold nanoparticles are known to cause a radiosensitizing effect, which is a promising way to improve radiation therapy. However, the radiosensitization mechanism is not yet fully understood. It is currently assumed that gold nanoparticles can influence various physical, chemical, and biological processes. Pulse radiolysis is a powerful tool that can examine one of the proposed effects of gold nanoparticles, such as increased free radical production. In this work, we shed light on the consequence of ionizing radiation interaction with gold nanoparticles by direct measurements of solvated electrons using the pulse radiolysis technique. We found that at a therapeutically relevant gold concentration (<3 mM atomic gold, <600 µg × cm-3), the presence of gold nanoparticles in solution does not induce higher primary radicals' formation. This result indicates that energy absorption by gold nanoparticles and related effects such as higher ionization of surrounding media and •OH radicals overproduction are not the reason for the radiosensitizing effect reported in the literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA