Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 201(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30745367

RESUMO

Mycobacterium tuberculosis utilizes fatty acids of the host as the carbon source. Metabolism of odd-chain fatty acids by Mycobacterium tuberculosis produces propionyl coenzyme A (propionyl-CoA). The methylcitrate cycle is essential for mycobacteria to utilize the propionyl-CoA to persist and grow on these fatty acids. In M. smegmatis, methylcitrate synthase, methylcitrate dehydratase, and methylisocitrate lyase involved in the methylcitrate cycle are encoded by prpC, prpD, and prpB, respectively, in operon prpDBC In this study, we found that the nitrogen regulator GlnR directly binds to the promoter region of the prpDBC operon and inhibits its transcription. The binding motif of GlnR was identified by bioinformatic analysis and validated using DNase I footprinting and electrophoretic mobility shift assays. The GlnR-binding motif is separated by a 164-bp sequence from the binding site of PrpR, a pathway-specific transcriptional activator of methylcitrate cycle, but the binding affinity of GlnR to prpDBC is much stronger than that of PrpR. Deletion of glnR resulted in faster growth in propionate or cholesterol medium compared with the wild-type strain. The ΔglnR mutant strain also showed a higher survival rate in macrophages. These results illustrated that the nitrogen regulator GlnR regulates the methylcitrate cycle through direct repression of the transcription of the prpDBC operon. This finding not only suggests an unprecedented link between nitrogen metabolism and the methylcitrate pathway but also reveals a potential target for controlling the growth of pathogenic mycobacteria.IMPORTANCE The success of mycobacteria survival in macrophage depends on its ability to assimilate fatty acids and cholesterol from the host. The cholesterol and fatty acids are catabolized via ß-oxidation to generate propionyl coenzyme A (propionyl-CoA), which is then primarily metabolized via the methylcitrate cycle. Here, we found a typical GlnR binding box in the prp operon, and the affinity is much stronger than that of PrpR, a transcriptional activator of methylcitrate cycle. Furthermore, GlnR repressed the transcription of the prp operon. Deletion of glnR significantly enhanced the growth of Mycobacterium tuberculosis in propionate or cholesterol medium, as well as viability in macrophages. These findings provide new insights into the regulatory mechanisms underlying the cross talk of nitrogen and carbon metabolisms in mycobacteria.


Assuntos
Proteínas de Bactérias/biossíntese , Citratos/metabolismo , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas/genética , Mycobacterium smegmatis/enzimologia , Proteínas Repressoras/metabolismo , Transcrição Gênica , Sítios de Ligação , Carbono-Carbono Liases/biossíntese , Citrato (si)-Sintase/biossíntese , DNA Bacteriano/metabolismo , Deleção de Genes , Hidroliases/biossíntese , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Óperon , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/genética
2.
Front Microbiol ; 12: 603835, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613477

RESUMO

Mycobacterium smegmatis (Msm), along with its pathogenic counterpart Mycobacterium tuberculosis (Mtb), utilizes fatty acids and cholesterol as important carbon and energy sources during the persistence within host cells. As a dual-functional enzyme in the glyoxylate cycle and the methylcitrate cycle, isocitrate lyase (ICL, encoded by icl or MSMEG_0911) is indispensable for the growth of Msm and Mtb on short-chain fatty acids. However, regulation of icl in mycobacteria in response to nutrient availability remains largely unknown. Here, we report that the global nitrogen metabolism regulator GlnR represses icl expression by binding to an atypical binding motif in the icl promoter region under nitrogen-limiting conditions. We further show that GlnR competes with PrpR, a transcriptional activator of icl, and dominantly occupies the co-binding motif in the icl promoter region. In the absence of GlnR or in response to the excess nitrogen condition, Msm cells elongate and exhibit robust growth on short-chain fatty acids due to the PrpR-mediated activation of icl, thereby inducing enhanced apoptosis in infected macrophages. Taken together, our findings reveal the GlnR-mediated repression of icl on fatty acid metabolism, which might be a general strategy of nutrient sensing and environmental adaptation employed by mycobacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA