RESUMO
Separation and flux performance were compared in graphene-based membranes that differed only in the method of deposition of reduced graphene oxide platelets. Membranes with higher degree of order were produced by evaporation-induced capillary-force self-assembly, which showed higher steric rejection properties while simultaneously accentuating water permeance compared to membranes produced by the traditional vacuum filtration technique. These studies attempt to establish structure-property correlations in graphene-based membranes.
RESUMO
Graphene-based membranes demonstrating ultrafast water transport, precise molecular sieving of gas and solvated molecules shows great promise as novel separation platforms; however, scale-up of these membranes to large-areas remains an unresolved problem. Here we demonstrate that the discotic nematic phase of graphene oxide (GO) can be shear aligned to form highly ordered, continuous, thin films of multi-layered GO on a support membrane by an industrially adaptable method to produce large-area membranes (13 × 14 cm(2)) in <5 s. Pressure driven transport data demonstrate high retention (>90%) for charged and uncharged organic probe molecules with a hydrated radius above 5 Å as well as modest (30-40%) retention of monovalent and divalent salts. The highly ordered graphene sheets in the plane of the membrane make organized channels and enhance the permeability (71 ± 5 l m(-2) hr(-1) bar(-1) for 150 ± 15 nm thick membranes).
RESUMO
The TruFit CB osteochondral scaffold plug is a commercially available and licensed scaffold implant for the treatment of chondral and osteochondral defects of the knee. A number of surgical techniques have been described that are designed to achieve neocartilaginous tissue cover of a chondral defect, but many result in fibrocartilage tissue, not type II collagen hyaline cartilage. This fibrocartilage layer can fail with high shear forces in the knee joint, and lead to ongoing articular surface irregularity and subsequent secondary arthritic change. Recent research and clinical interest has focused on employing tissue-engineering techniques utilizing scaffolds in an attempt to obtain cartilage repair tissue that is histologically and biomechanically superior. The TruFit CB implant is one such device. This article describes the techniques of attempted chondral repair and the problems that can be experienced. Current concepts in chondral scaffold design are discussed, and the surgical technique and early experiences with the TruFit CB implant are presented.