Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34508005

RESUMO

Macromolecules such as monoclonal antibodies (mAbs) are likely to experience poor tumor penetration because of their large size, and thus low drug exposure of target cells within a tumor could contribute to suboptimal responses. Given the challenge of inadequate quantitative tools to assess mAb activity within tumors, we hypothesized that measurement of accessible target levels in tumors could elucidate the pharmacologic activity of a mAb and could be used to compare the activity of different mAbs. Using positron emission tomography (PET), we measured the pharmacodynamics of immune checkpoint protein programmed-death ligand 1 (PD-L1) to evaluate pharmacologic effects of mAbs targeting PD-L1 and its receptor programmed cell death protein 1 (PD-1). For PD-L1 quantification, we first developed a small peptide-based fluorine-18-labeled PET imaging agent, [18F]DK222, which provided high-contrast images in preclinical models. We then quantified accessible PD-L1 levels in the tumor bed during treatment with anti-PD-1 and anti-PD-L1 mAbs. Applying mixed-effects models to these data, we found subtle differences in the pharmacodynamic effects of two anti-PD-1 mAbs (nivolumab and pembrolizumab). In contrast, we observed starkly divergent target engagement with anti-PD-L1 mAbs (atezolizumab, avelumab, and durvalumab) that were administered at equivalent doses, correlating with differential effects on tumor growth. Thus, we show that measuring PD-L1 pharmacodynamics informs mechanistic understanding of therapeutic mAbs targeting PD-L1 and PD-1. These findings demonstrate the value of quantifying target pharmacodynamics to elucidate the pharmacologic activity of mAbs, independent of mAb biophysical properties and inclusive of all physiological variables, which are highly heterogeneous within and across tumors and patients.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Radioisótopos de Flúor/farmacocinética , Fragmentos de Peptídeos/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Apoptose , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Compostos Radiofarmacêuticos/farmacocinética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Apoptosis ; 24(1-2): 21-32, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30610505

RESUMO

Current therapeutic strategies used in Ewing sarcoma (ES) especially for relapsed patients have resulted in modest improvements in survival over the past 20 years. Combination therapeutic approach presents as an alternative to overcoming drug resistance in metastatic ES. This study evaluated the effect of Clotam (tolfenamic acid or TA), a small molecule and inhibitor of Specificity protein1 (Sp1) and survivin for sensitizing ES cell lines to chemotherapeutic agent, vincristine (VCR). ES cells (CHLA-9 and TC-32) were treated with TA or VCR or TA + VCR (combination), and cell viability was assessed after 24/48/72 h. Effect of TA or VCR or TA + VCR treatment on cell cycle arrest and apoptosis were evaluated using propidium iodide, cell cycle assay and Annexin V flow cytometry respectively. The apoptosis markers, caspase 3/7 (activity levels) and cleaved-PARP (protein expression) were measured. Cardiomyocytes, H9C2 were used as non-malignant cells. While, all treatments caused time- and dose-dependent inhibition of cell viability, interestingly, combination treatment caused significantly higher response (~ 80% inhibition, p < 0.05). Cell viability inhibition was accompanied by inhibition of Sp1 and Survivin. TA + VCR treatment significantly (p < 0.05) increased caspase 3/7 activity which strongly correlated with upregulated c-PARP level and Annexin V staining. Cell cycle arrest was observed at G0/G1 (TA) or G2/M (VCR and TA + VCR). All treatments did not cause cytotoxicity in H9C2 cells. These results suggest that TA could enhance the anti-cancer activity of VCR in ES cells. Therefore, TA + VCR combination could be further tested to develop as safe/effective therapeutic strategy for treating ES.


Assuntos
Neoplasias Ósseas/patologia , Proliferação de Células/efeitos dos fármacos , Sarcoma de Ewing/patologia , Vincristina/farmacologia , ortoaminobenzoatos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/mortalidade , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Criança , Sinergismo Farmacológico , Humanos , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/mortalidade , Survivina/metabolismo
3.
Invest New Drugs ; 35(2): 158-165, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28025760

RESUMO

Transcription factor Specificity protein 1 (Sp1) and its downstream target survivin (inhibitor of apoptosis protein), play major roles in the pathogenesis of various cancers. Ewing Sarcoma (ES) is a common soft tissue/bone tumor in adolescent and young adults. Overexpression of survivin is also linked to the aggressiveness and poor prognosis of ES. Small molecule Tolfenamic acid (TA) inhibits Sp1 and survivin in cancer cells. In this investigation, we demonstrate a strategy to target Sp1 and survivin using TA and positive control Mithramycin A (Mit) to inhibit ES cell growth. Knock down of Sp1 using small interfering RNA (siRNA) resulted in significant (p < 0.05) inhibition of CHLA-9 and TC-32 cell growth as assessed by CellTiter-Glo assay kit. TA or Mit treatment caused dose/time-dependent inhibition of cell viability, and this inhibition was correlated with a decrease in Sp1 and survivin protein levels in ES cells. Quantitative PCR results showed that Mit treatment decreased the mRNA expression of both survivin and Sp1, whereas TA diminished only survivin but not Sp1. Proteasome inhibitor restored TA-induced inhibition of Sp1 protein expression suggesting that TA might cause proteasome-dependent degradation. Gel shift assay using ES cell nuclear extract and biotinylated Sp1 consensus oligonucleotides confirmed that both TA and Mit decreased DNA-binding activity of Sp1. These results demonstrate that both Mit and TA reduce expression of Sp1 and survivin, disrupt Sp1 DNA-binding and inhibit ES cell proliferation. This investigation suggests that targeting Sp1 and survivin could be an effective strategy for inhibiting ES cell growth.


Assuntos
Antineoplásicos/farmacologia , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Sarcoma de Ewing/tratamento farmacológico , Fator de Transcrição Sp1/antagonistas & inibidores , ortoaminobenzoatos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Survivina
4.
Int J Pharm ; 665: 124694, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39265855

RESUMO

Cryopreservation is important in manufacturing of cell therapy products, influencing their safety and effectiveness. During freezing and thawing, intracellular events such as dehydration and ice formation can impact cell viability. In this study, the impact of controlling the ice nucleation temperature on intracellular events and viability were investigated. A model T cell line, Jurkat cells, were evaluated in commercially relevant cryoformulations (2.5 and 5 % v/v DMSO in Plasma-Lyte A) using a cryomicroscopic setup to monitor the dynamic changes cells go through during freeze-thaw as well as a controlled rate freezer to study bulk freeze-thaw. The equilibrium freezing temperatures of the studied formulations and a DMSO/Plasma-Lyte A liquidus curve were determined using DSC. The cryomicroscopic studies revealed that an ice nucleation temperature of -6°C, close to the equilibrium freezing temperatures of cryoformulations, led to more intracellular dehydration and less intracellular ice formation during freezing compared to either a lower ice nucleation temperature (-10 °C) or uncontrolled ice nucleation. The cell membrane integrity and post thaw viability in bulk cryopreservation consistently demonstrated the advantage of the higher ice nucleation temperature, and the correlation between the cellular events and cell viability.

5.
J Pharm Sci ; 110(12): 3786-3793, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34364901

RESUMO

Application of Raman spectroscopy as a T cell characterization tool supporting cell therapy drug product development has been evaluated. Statistically significant correlations between a set of Raman signals and established flow cytometry markers associated with apoptosis of T cells detected during drug product cryopreservation are presented in this study. Our study results demonstrate the potential of Raman spectroscopy for label-free measurements of T cell characteristics relevant to cell therapy product design and process control.


Assuntos
Preparações Farmacêuticas , Análise Espectral Raman , Apoptose , Morte Celular , Terapia Baseada em Transplante de Células e Tecidos , Projetos Piloto , Análise Espectral Raman/métodos , Linfócitos T
6.
J Clin Invest ; 129(2): 616-630, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30457978

RESUMO

Immune checkpoint therapies have shown tremendous promise in cancer therapy. However, tools to assess their target engagement, and hence the ability to predict their efficacy, have been lacking. Here, we show that target engagement and tumor-residence kinetics of antibody therapeutics targeting programmed death ligand-1 (PD-L1) can be quantified noninvasively. In computational docking studies, we observed that PD-L1-targeted monoclonal antibodies (atezolizumab, avelumab, and durvalumab) and a high-affinity PD-L1-binding peptide, WL12, have common interaction sites on PD-L1. Using the peptide radiotracer [64Cu]WL12 in vivo, we employed positron emission tomography (PET) imaging and biodistribution studies in multiple xenograft models and demonstrated that variable PD-L1 expression and its saturation by atezolizumab, avelumab, and durvalumab can be quantified independently of biophysical properties and pharmacokinetics of antibodies. Next, we used [64Cu]WL12 to evaluate the impact of time and dose on the unoccupied fraction of tumor PD-L1 during treatment. These quantitative measures enabled, by mathematical modeling, prediction of antibody doses needed to achieve therapeutically effective occupancy (defined as >90%). Thus, we show that peptide-based PET is a promising tool for optimizing dose and therapeutic regimens employing PD-L1 checkpoint antibodies, and can be used for improving therapeutic efficacy.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Modelos Biológicos , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Experimentais , Peptídeos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Células A549 , Animais , Células CHO , Radioisótopos de Cobre , Cricetulus , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Peptídeos/química , Peptídeos/farmacocinética , Peptídeos/farmacologia , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/farmacologia
7.
J Nutr Biochem ; 31: 77-87, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27133426

RESUMO

Combination of dietary/herbal spice curcumin (Cur) and COX inhibitors has been tested for improving therapeutic efficacy in pancreatic cancer (PC). The objective of this study was to identify agent with low toxicity and COX-independent mechanism to induce PC cell growth inhibition when used along with Cur. Anticancer NSAID, tolfenamic acid (TA) and Cur combination were evaluated using PC cell lines. L3.6pl and MIA PaCa-2 cells were treated with Cur (5-25µM) or TA (25-100µM) or combination of Cur (7.5µM) and TA (50µM). Cell viability was measured at 24-72h posttreatment using CellTiter-Glo kit. While both agents showed a steady/consistent effect, Cur+TA caused higher growth inhibition. Antiproliferative effect was compared with COX inhibitors, Ibuprofen and Celebrex. Cardiotoxicity was assessed using cordiomyocytes (H9C2). The expression of Sp proteins, survivin and apoptotic markers (western blot), caspase 3/7 (caspase-Glo kit), Annexin-V staining (flow cytometry), reactive oxygen species (ROS) and cell cycle phase distribution (flow cytometry) was measured. Cells were treated with TNF-α, and NF-kB translocation from cytoplasm to nucleus was evaluated (immunofluorescence). When compared to individual agents, combination of Cur+TA caused significant increase in apoptotic markers, ROS levels and inhibited NF-kB translocation to nucleus. TA caused cell cycle arrest in G0/G1, and the combination treatment showed mostly DNA synthesis phase arrest. These results suggest that combination of Cur+TA is less toxic and effectively enhance the therapeutic efficacy in PC cells via COX-independent mechanisms.


Assuntos
Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Curcumina/administração & dosagem , NF-kappa B/metabolismo , Neoplasias Pancreáticas/patologia , Fator de Transcrição Sp1/metabolismo , ortoaminobenzoatos/administração & dosagem , Linhagem Celular Tumoral , Humanos , Transporte Proteico
8.
Int J Dev Neurosci ; 46: 92-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26287661

RESUMO

Chemotherapeutic regimens used for the treatment of Neuroblastoma (NB) cause long-term side effects in pediatric patients. NB arises in immature sympathetic nerve cells and primarily affects infants and children. A high rate of relapse in high-risk neuroblastoma (HRNB) necessitates the development of alternative strategies for effective treatment. This study investigated the efficacy of a small molecule, tolfenamic acid (TA), for enhancing the anti-proliferative effect of 13 cis-retinoic acid (RA) in HRNB cell lines. LA1-55n and SH-SY5Y cells were treated with TA (30µM) or RA (20µM) or both (optimized doses, derived from dose curves) for 48h and tested the effect on cell viability, apoptosis and selected molecular markers (Sp1, survivin, AKT and ERK1/2). Cell viability and caspase activity were measured using the CellTiter-Glo and Caspase-Glo kits. The apoptotic cell population was determined by flow cytometry with Annexin-V staining. The expression of Sp1, survivin, AKT, ERK1/2 and c-PARP was evaluated by Western blots. The combination therapy of TA and RA resulted in significant inhibition of cell viability (p<0.0001) when compared to individual agents. The anti-proliferative effect is accompanied by a decrease in Sp1 and survivin expression and an increase in apoptotic markers, Annexin-V positive cells, caspase 3/7 activity and c-PARP levels. Notably, TA+RA combination also caused down regulation of AKT and ERK1/2 suggesting a distinct impact on survival and proliferation pathways via signaling cascades. This study demonstrates that the TA mediated inhibition of Sp1 in combination with RA provides a novel therapeutic strategy for the effective treatment of HRNB in children.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Isotretinoína/farmacologia , Teratogênicos/farmacologia , ortoaminobenzoatos/farmacologia , Análise de Variância , Anexina A5/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Citometria de Fluxo , Humanos , Neuroblastoma/patologia , Fatores de Tempo
9.
PLoS One ; 9(7): e102390, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25072375

RESUMO

While the role of Transforming Growth Factor ß (TGF-ß) as an intrinsic pathway has been well established in driving de novo differentiation of Th17 cells, no study has directly assessed the capacity of TGF-ß signaling initiated within dendritic cells (DCs) to regulate Th17 differentiation. The central finding of this study is the demonstration that Th17 cell fate during autoimmune inflammation is shaped by TGF-ß extrinsic pathway via DCs. First, we provide evidence that TGF-ß limits at the site of inflammation the differentiation of highly mature DCs as a means of restricting Th17 cell differentiation and controlling autoimmunity. Second, we demonstrate that TGF-ß controls DC differentiation in the inflammatory site but not in the priming site. Third, we show that TGF-ß controls DC numbers at a precursor level but not at a mature stage. While it is undisputable that TGF-ß intrinsic pathway drives Th17 differentiation, our data provide the first evidence that TGF-ß can restrict Th17 differentiation via DC suppression but such a control occurs in the site of inflammation, not at the site of priming. Such a demarcation of the role of TGF-ß in DC lineage is unprecedented and holds serious implications vis-à-vis future DC-based therapeutic targets.


Assuntos
Diferenciação Celular , Células Dendríticas/metabolismo , Transdução de Sinais , Células Th17/citologia , Células Th17/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Antígeno CD11c , Contagem de Células , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Células Dendríticas/imunologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/diagnóstico , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Camundongos , Imagem Molecular , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Índice de Gravidade de Doença , Células Th17/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA