Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Front Immunol ; 13: 1011247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685584

RESUMO

The protective role of Natural Killer (NK) cell tumour immunosurveillance has long been recognised in colorectal cancer (CRC). However, as most patients show limited intra-tumoral NK cell infiltration, improving our ability to identify those with high NK cell activity might aid in dissecting the molecular features which underlie NK cell sensitivity. Here, a novel CRC-specific NK cell gene signature that infers NK cell load in primary tissue samples was derived and validated in multiple patient CRC cohorts. In contrast with other NK cell gene signatures that have several overlapping genes across different immune cell types, our NK cell signature has been extensively refined to be specific for CRC-infiltrating NK cells. The specificity of the signature is substantiated in tumour-infiltrating NK cells from primary CRC tumours at the single cell level, and the signature includes genes representative of NK cells of different maturation states, activation status and anatomical origin. Our signature also accurately discriminates murine NK cells, demonstrating the applicability of this geneset when mining datasets generated from preclinical studies. Differential gene expression analysis revealed tumour-intrinsic features associated with NK cell inclusion versus exclusion in CRC patients, with those tumours with predicted high NK activity showing strong evidence of enhanced chemotactic and cytotoxic transcriptional programs. Furthermore, survival modelling indicated that NK signature expression is associated with improved survival outcomes in CRC patients. Thus, scoring CRC samples with this refined NK cell signature might aid in identifying patients with high NK cell activity who could be prime candidates for NK cell directed immunotherapies.


Assuntos
Neoplasias Colorretais , Humanos , Camundongos , Animais , Células Matadoras Naturais
2.
Front Immunol ; 13: 931630, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874669

RESUMO

Cytotoxic lymphocytes are essential for anti-tumor immunity, and for effective responses to cancer immunotherapy. Natural killer cell granule protein 7 (NKG7) is expressed at high levels in cytotoxic lymphocytes infiltrating tumors from patients treated with immunotherapy, but until recently, the role of this protein in cytotoxic lymphocyte function was largely unknown. Unexpectedly, we found that highly CD8+ T cell-immunogenic murine colon carcinoma (MC38-OVA) tumors grew at an equal rate in Nkg7+/+ and Nkg7-/- littermate mice, suggesting NKG7 may not be necessary for effective CD8+ T cell anti-tumor activity. Mechanistically, we found that deletion of NKG7 reduces the ability of CD8+ T cells to degranulate and kill target cells in vitro. However, as a result of inefficient cytotoxic activity, NKG7 deficient T cells form a prolonged immune synapse with tumor cells, resulting in increased secretion of inflammatory cytokines, including tumor necrosis factor alpha (TNF). By deleting the TNF receptor, TNFR1, from MC38-OVA tumors, we demonstrate that this hyper-secretion of TNF compensates for reduced synapse-mediated cytotoxic activity against MC38-OVA tumors in vivo, via increased TNF-mediated tumor cell death. Taken together, our results demonstrate that NKG7 enhances CD8+ T cell immune synapse efficiency, which may serve as a mechanism to accelerate direct cytotoxicity and limit potentially harmful inflammatory responses.


Assuntos
Linfócitos T CD8-Positivos , Sinapses Imunológicas , Proteínas de Membrana , Neoplasias , Animais , Imunoterapia/métodos , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Neoplasias/terapia , Fator de Necrose Tumoral alfa/metabolismo
3.
Cancers (Basel) ; 14(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35158849

RESUMO

Geno- and phenotypic heterogeneity amongst cancer cell subpopulations are established drivers of treatment resistance and tumour recurrence. However, due to the technical difficulty associated with studying such intra-tumoural heterogeneity, this phenomenon is seldom interrogated in conventional cell culture models. Here, we employ a fluorescent lineage technique termed "optical barcoding" (OBC) to perform simultaneous longitudinal tracking of spatio-temporal fate in 64 patient-derived colorectal cancer subclones. To do so, patient-derived cancer cell lines and organoids were labelled with discrete combinations of reporter constructs, stably integrated into the genome and thus passed on from the founder cell to all its clonal descendants. This strategy enables the longitudinal monitoring of individual cell lineages based upon their unique optical barcodes. By designing a novel panel of six fluorescent proteins, the maximum theoretical subpopulation resolution of 64 discriminable subpopulations was achieved, greatly improving throughput compared with previous studies. We demonstrate that all subpopulations can be purified from complex clonal mixtures via flow cytometry, permitting the downstream isolation and analysis of any lineages of interest. Moreover, we outline an optimized imaging protocol that can be used to image optical barcodes in real-time, allowing for clonal dynamics to be resolved in live cells. In contrast with the limited intra-tumour heterogeneity observed in conventional 2D cell lines, the OBC technique was successfully used to quantify dynamic clonal expansions and contractions in 3D patient-derived organoids, which were previously demonstrated to better recapitulate the heterogeneity of their parental tumour material. In summary, we present OBC as a user-friendly, inexpensive, and high-throughput technique for monitoring intra-tumoural heterogeneity in in vitro cell culture models.

4.
Cancer Discov ; 11(6): 1582-1599, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33436370

RESUMO

Internal tandem duplication of the FMS-like tyrosine kinase 3 gene (FLT3-ITD) occurs in 30% of all acute myeloid leukemias (AML). Limited clinical efficacy of FLT3 inhibitors highlights the need for alternative therapeutic modalities in this subset of disease. Using human and murine models of FLT3-ITD-driven AML, we demonstrate that FLT3-ITD promotes serine synthesis and uptake via ATF4-dependent transcriptional regulation of genes in the de novo serine biosynthesis pathway and neutral amino acid transport. Genetic or pharmacologic inhibition of PHGDH, the rate-limiting enzyme of de novo serine biosynthesis, selectively inhibited proliferation of FLT3-ITD AMLs in vitro and in vivo. Moreover, pharmacologic inhibition of PHGDH sensitized FLT3-ITD AMLs to the standard-of-care chemotherapeutic cytarabine. Collectively, these data reveal novel insights into FLT3-ITD-induced metabolic reprogramming and reveal a targetable vulnerability in FLT3-ITD AML. SIGNIFICANCE: FLT3-ITD mutations are common in AML and are associated with poor prognosis. We show that FLT3-ITD stimulates serine biosynthesis, thereby rendering FLT3-ITD-driven leukemias dependent upon serine for proliferation and survival. This metabolic dependency can be exploited pharmacologically to sensitize FLT3-ITD-driven AMLs to chemotherapy.This article is highlighted in the In This Issue feature, p. 1307.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Serina/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Linhagem Celular Tumoral/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Inibidores de Proteínas Quinases
5.
Cancers (Basel) ; 13(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830797

RESUMO

Despite high response rates to initial chemotherapy, the majority of women diagnosed with High-Grade Serous Ovarian Cancer (HGSOC) ultimately develop drug resistance within 1-2 years of treatment. We previously identified the most common mechanism of acquired resistance in HGSOC to date, transcriptional fusions involving the ATP-binding cassette (ABC) transporter ABCB1, which has well established roles in multidrug resistance. However, the underlying biology of fusion-positive cells, as well as how clonal interactions between fusion-negative and positive populations influences proliferative fitness and therapeutic response remains unknown. Using a panel of fusion-negative and positive HGSOC single-cell clones, we demonstrate that in addition to mediating drug resistance, ABCB1 fusion-positive cells display impaired proliferative capacity, elevated oxidative metabolism, altered actin cellular morphology and an extracellular matrix/inflammatory enriched transcriptional profile. The co-culture of fusion-negative and positive populations had no effect on cellular proliferation but markedly altered drug sensitivity to doxorubicin, paclitaxel and cisplatin. Finally, high-throughput screening of 2907 FDA-approved compounds revealed 36 agents that induce equal cytotoxicity in both pure and mixed ABCB1 fusion populations. Collectively, our findings have unraveled the underlying biology of ABCB1 fusion-positive cells beyond drug resistance and identified novel therapeutic agents that may significantly improve the prognosis of relapsed HGSOC patients.

6.
Cancer Lett ; 476: 161-169, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32105676

RESUMO

Remodeling of basement membrane proteins contributes to tumor progression towards the metastatic stage. One of these proteins, laminin 521 (LN521), sustains embryonic and induced pluripotent stem cell self-renewal, but its putative role in cancer is poorly described. In the present study we found that LN521 promotes colorectal cancer (CRC) cell self-renewal and invasion. siRNA-mediated knockdown of endogenously-produced laminin alpha 5, as well as treatment with neutralizing antibodies against integrin α3ß1 and α6ß1, were able to reverse the effect of LN521 on self-renewal. Exposure of CRC cells to LN521 enhanced STAT3 phosphorylation, and incubation with STAT3 inhibitors Napabucasin and Stattic was sufficient to block the LN521-driven self-renewal increase. Robust expression of laminin alpha 5 was detected in 7/10 liver metastases tissue sections collected from CRC patients as well as in mouse liver metastasis xenografts, in most cases within areas expressing metastasis cancer stem cell markers such as c-KIT and CD44v6. Finally, retrospective analysis of multiple CRC datasets highlighted the significant association between high LN521 mRNA expression and poor clinical outcome in colorectal cancer patients. Collectively our results indicate that high Laminin 521 expression is a frequent feature of metastatic dissemination in CRC and that it promotes cell invasion and self-renewal, the latter through engagement of integrin isoforms and activation of STAT3 signaling.


Assuntos
Biomarcadores Tumorais/metabolismo , Autorrenovação Celular , Neoplasias Colorretais/patologia , Laminina/metabolismo , Neoplasias Hepáticas/secundário , Células-Tronco Neoplásicas/patologia , Fator de Transcrição STAT3/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Laminina/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Estudos Retrospectivos , Fator de Transcrição STAT3/genética , Transdução de Sinais , Taxa de Sobrevida , Células Tumorais Cultivadas
7.
Cancers (Basel) ; 11(9)2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438563

RESUMO

Metastatic tumors are the primary cause of cancer-related mortality. In recent years, interest in the immunologic control of malignancy has helped establish escape from immunosurveillance as a critical requirement for incipient metastases. Our improved understanding of the immune system's interactions with cancer cells has led to major therapeutic advances but has also unraveled a previously unsuspected level of complexity. This review will discuss the vast spatial and functional heterogeneity in the tumor-infiltrating immune system, with particular focus on natural killer (NK) cells, as well as the impact of tumor cell-specific factors, such as secretome composition, receptor-ligand repertoire, and neoantigen diversity, which can further drive immunological heterogeneity. We emphasize how tumor and immunological heterogeneity may undermine the efficacy of T-cell directed immunotherapies and explore the potential of NK cells to be harnessed to circumvent these limitations.

8.
Clin Exp Metastasis ; 35(4): 333-345, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29335811

RESUMO

Surgery remains the curative treatment modality for colorectal cancer in all stages, including stage IV with resectable liver metastasis. There is emerging evidence that the stress response caused by surgery as well as other perioperative therapies such as anesthesia and analgesia may promote growth of pre-existing micro-metastasis or potentially initiate tumor dissemination. Therapeutically targeting the perioperative period may therefore reduce the effect that surgical treatments have in promoting metastases, for example by combining ß-adrenergic receptor antagonists and cyclooxygenase-2 (COX-2) inhibitors in the perioperative setting. In this paper, we highlight some of the mechanisms that may underlie surgery-related metastatic development in colorectal cancer. These include direct tumor spillage at the time of surgery, suppression of the anti-tumor immune response, direct stimulatory effects on tumor cells, and activation of the coagulation system. We summarize in more detail results that support a role for catecholamines as major drivers of the pro-metastatic effect induced by the surgical stress response, predominantly through activation of ß-adrenergic signaling. Additionally, we argue that an improved understanding of surgical stress-induced dissemination, and more specifically whether it impacts on the level and nature of heterogeneity within residual tumor cells, would contribute to the successful clinical targeting of this process. Finally, we provide a proof-of-concept demonstration that ex-vivo analyses of colorectal cancer patient-derived samples using RGB-labeling technology can provide important insights into the heterogeneous sensitivity of tumor cells to stress signals. This suggests that intra-tumor heterogeneity is likely to influence the efficacy of perioperative ß-adrenergic receptor and COX-2 inhibition, and that ex-vivo characterization of heterogeneous stress response in tumor samples can synergize with other models to optimize perioperative treatments and further improve outcome in colorectal and other solid cancers.


Assuntos
Neoplasias Colorretais/patologia , Neoplasias Colorretais/cirurgia , Estresse Fisiológico/fisiologia , Animais , Humanos , Metástase Neoplásica
9.
Cancer Res ; 78(11): 2925-2938, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29510994

RESUMO

Posttreatment recurrence of colorectal cancer, the third most lethal cancer worldwide, is often driven by a subpopulation of cancer stem cells (CSC). The tight junction (TJ) protein claudin-2 is overexpressed in human colorectal cancer, where it enhances cell proliferation, colony formation, and chemoresistance in vitro While several of these biological processes are features of the CSC phenotype, a role for claudin-2 in the regulation of these has not been identified. Here, we report that elevated claudin-2 expression in stage II/III colorectal tumors is associated with poor recurrence-free survival following 5-fluorouracil-based chemotherapy, an outcome in which CSCs play an instrumental role. In patient-derived organoids, primary cells, and cell lines, claudin-2 promoted colorectal cancer self-renewal in vitro and in multiple mouse xenograft models. Claudin-2 enhanced self-renewal of ALDHHigh CSCs and increased their proportion in colorectal cancer cell populations, limiting their differentiation and promoting the phenotypic transition of non-CSCs toward the ALDHHigh phenotype. Next-generation sequencing in ALDHHigh cells revealed that claudin-2 regulated expression of nine miRNAs known to control stem cell signaling. Among these, miR-222-3p was instrumental for the regulation of self-renewal by claudin-2, and enhancement of this self-renewal required activation of YAP, most likely upstream from miR-222-3p. Taken together, our results indicate that overexpression of claudin-2 promotes self-renewal within colorectal cancer stem-like cells, suggesting a potential role for this protein as a therapeutic target in colorectal cancer.Significance: Claudin-2-mediated regulation of YAP activity and miR-222-3p expression drives CSC renewal in colorectal cancer, making it a potential target for therapy. Cancer Res; 78(11); 2925-38. ©2018 AACR.


Assuntos
Autorrenovação Celular/fisiologia , Claudina-2/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/fisiopatologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/fisiologia , Proteína da Zônula de Oclusão-2/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA