Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 37(13): 1821-1827, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-33453108

RESUMO

MOTIVATION: Virus integration in the host genome is frequently reported to be closely associated with many human diseases, and the detection of virus integration is a critically challenging task. However, most existing tools show limited specificity and sensitivity. Therefore, the objective of this study is to develop a method for accurate detection of virus integration into host genomes. RESULTS: Herein, we report a novel method termed HIVID2 that is a significant upgrade of HIVID. HIVID2 performs a paired-end combination (PE-combination) for potentially integrated reads. The resulting sequences are then remapped onto the reference genomes, and both split and discordant chimeric reads are used to identify accurate integration breakpoints with high confidence. HIVID2 represents a great improvement in specificity and sensitivity, and predicts breakpoints closer to the real integrations, compared with existing methods. The advantage of our method was demonstrated using both simulated and real datasets. HIVID2 uncovered novel integration breakpoints in well-known cervical cancer-related genes, including FHIT and LRP1B, which was verified using protein expression data. In addition, HIVID2 allows the user to decide whether to automatically perform advanced analysis using the identified virus integrations. By analyzing the simulated data and real data tests, we demonstrated that HIVID2 is not only more accurate than HIVID but also better than other existing programs with respect to both sensitivity and specificity. We believe that HIVID2 will help in enhancing future research associated with virus integration. AVAILABILITYAND IMPLEMENTATION: HIVID2 can be accessed at https://github.com/zengxi-hada/HIVID2/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

2.
Hepatol Int ; 16(6): 1339-1352, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36123506

RESUMO

BACKGROUND: Integration of HBV DNA into the human genome could progressively contribute to hepatocarcinogenesis. Both intrahepatic cholangiocarcinoma (ICC) and combined hepatocellular-cholangiocarcinoma (CHC) are known to be associated with HBV infection. However, the integration of HBV and mechanism of HBV-induced carcinogenesis in ICC and CHC remains unclear. METHODS: 41 patients with ICC and 20 patients with CHC were recruited in the study. We conducted HIVID analysis on these 61 samples to identify HBV integration sites in both the tumor tissues and adjacent non-tumor liver tissues. To further explore the effect of HBV integration on gene alteration, we selected paired tumors and adjacent non-tumor liver tissues from 3 ICC and 4 CHC patients for RNA-seq and WGS. RESULTS: We detected 493 HBV integration sites in ICC patients, of which 417 were from tumor samples and 76 were from non-tumor samples. And 246 HBV integration sites were detected in CHC patients, of which 156 were located in the genome of tumor samples and 90 were in non-tumor samples. Recurrent HBV integration events were detected in ICC including TERT, ZMAT4, MET, ANKFN1, PLXNB2, and in CHC like TERT, ALKBH5. Together with our established data of HBV-infected hepatocellular carcinoma, we found that HBV preferentially integrates into the specific regions which may affect the gene expression and regulation in cells and involved in carcinogenesis. We further performed genomic and transcriptomic sequencing of three ICC and four CHC patients, and found that HBV fragments could integrate near some important oncogene like TERT, causing large-scale genome variations on nearby genomic sequences, and at the same time changing the expression level of the oncogenes. CONCLUSION: Comparative analysis demonstrates numerous newly discovered mutational events in ICC and CHC resulting from HBV insertions in the host genome. Our study provides an in-depth biological and clinical insights into HBV-induced ICC and CHC.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Vírus da Hepatite B/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Colangiocarcinoma/genética , Integração Viral/genética , Oncogenes , Carcinogênese/genética , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA