Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(25): 7764-7773, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38864366

RESUMO

Inducing immunogenic cell death (ICD) during photothermal therapy (PTT) has the potential to effectively trigger photothermal immunotherapy (PTI). However, ICD induced by PTT alone is often limited by inefficient PTT, low immunogenicity of tumor cells, and a dysregulated redox microenvironment. Herein, we develop MoSe2 nanosheets with high-percentage metallic 1T phase and rich exposed active Mo centers through phase and defect engineering of MoSe2 as an effective nanoagent for PTI. The metallic 1T phase in MoSe2 nanosheets endows them with strong PTT performance, and the abundant exposed active Mo centers endow them with high activity for glutathione (GSH) depletion. The MoSe2-mediated high-performance PTT synergizing with efficient GSH depletion facilitates the release of tumor-associated antigens to induce robust ICD, thus significantly enhancing checkpoint blockade immunotherapy and activating systemic immune response in mouse models of colorectal cancer and triple-negative metastatic breast cancer.


Assuntos
Imunoterapia , Molibdênio , Terapia Fototérmica , Animais , Camundongos , Imunoterapia/métodos , Humanos , Molibdênio/química , Feminino , Linhagem Celular Tumoral , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Glutationa/química , Glutationa/metabolismo , Neoplasias Colorretais/terapia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/imunologia , Morte Celular Imunogênica/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Raios Infravermelhos , Selênio/química , Selênio/uso terapêutico , Fototerapia/métodos
2.
Ecotoxicol Environ Saf ; 225: 112787, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34544020

RESUMO

Cadmium (Cd) contamination of croplands has become a threat to crop food safety and human health. In this study, we investigated the effect of sulfur on the growth of water spinach under Cd stress and the amount of Cd accumulation by increasing the soil sulfate content. We found that the biomass of water spinach significantly increased after the application of sulfur while the shoot Cd concentration was considerably reduced (by 31%). The results revealed that sulfur could promote the expression of PME and LAC genes, accompanied by an increase in PME activity and lignin content. Also, the cell wall Cd content of water spinach roots was significantly increased under sulfur treatment. This finding suggests that sulfur could enhance the adsorption capacity of Cd by promoting the generation of cell wall components, thereby inhibiting the transportation of Cd via the apoplastic pathway. In addition, the higher expression of Nramp5 under the Cd1S0 (concentration of Cd and sulfur are 2.58 and 101.31 mg/kg respectively) treatment led to increased Cd uptake. The CAX3 and ABC transporters and GST were expressed at higher levels along with a higher cysteine content and GSH/GSSR value under Cd1S1 (concentration of Cd and sulfur are 2.60 and 198.36 mg/kg respectively) treatment, which contribute to the Cd detoxification and promotion of Cd compartmentalization in root vacuoles, thereby reducing the translocation of Cd to the shoot via the symplastic pathway.


Assuntos
Ipomoea , Cádmio/toxicidade , Perfilação da Expressão Gênica , Humanos , Enxofre , Meios de Transporte
3.
Ecotoxicol Environ Saf ; 225: 112776, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34537586

RESUMO

Both cadmium (Cd) contamination and boron (B) deficiency in farmland soils pose a threat to the yield and quality of crops in Southern China. The present study investigated the mechanisms by which B reduces Cd accumulation in rice (Oryza sativa) seedlings. Boron supplementation partially restored the decline in shoot and root biomass caused by Cd treatment (26% and 33%, respectively), with no significant difference between the B+Cd and control groups. We also found that B significantly reduced shoot and root Cd concentrations (by 64% and 25%, respectively) but increased Cd concentration (by 43%) and proportion (from 38% to 55%) in root cell walls. Transcriptome analysis and biochemical tests suggested that B supplementation enhanced lignin and pectin biosynthesis, pectin demethylation, and sulfur and glutathione metabolism. Moreover, B decreased the expression of some Cd-induced transporter-related genes (i.e., HMA2, Nramp1, and several ABC genes). These results indicate that B relieved Cd toxicity and reduced Cd accumulation in rice seedlings by restraining Cd uptake and translocation from root to shoot by improving Cd tolerance and chelation ability. These novel findings would benefit further investigations into how B influences Cd uptake, translocation, detoxification, and accumulation in crops.


Assuntos
Oryza , Plântula , Boro/toxicidade , Cádmio/toxicidade , Produtos Agrícolas , Oryza/genética
4.
Small ; 16(43): e2004173, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33006243

RESUMO

Transition metal dichalcogenide (TMD) nanomaterials, specially MoS2 , are proven to be appealing nanoagents for photothermal cancer therapies. However, the impact of the crystal phase of TMDs on their performance in photoacoustic imaging (PAI) and photothermal therapy (PTT) remains unclear. Herein, the preparation of ultrasmall single-layer MoS2 nanodots with different phases (1T and 2H phase) is reported to explore their phase-dependent performances as nanoagents for PAI guided PTT in the second near-infrared (NIR-II) window. Significantly, the 1T-MoS2 nanodots give a much higher extinction coefficient (25.6 L g-1  cm-1 ) at 1064 nm and subsequent photothermal power conversion efficiency (PCE: 43.3%) than that of the 2H-MoS2 nanodots (extinction coefficient: 5.3 L g-1  cm-1 , PCE: 21.3%). Moreover, the 1T-MoS2 nanodots also give strong PAI signals as compared to negligible signals of 2H-MoS2 nanodots in the NIR-II window. After modification with polyvinylpyrrolidone, the 1T-MoS2 nanodots can be used as a highly efficient agent for PAI guided PTT to effectively ablate cancer cells in vitro and tumors in vivo under 1064 nm laser irradiation. This work proves that the crystal phase plays a key role in determining the performance of nanoagents based on TMD nanomaterials for PAI guided PTT.


Assuntos
Técnicas Fotoacústicas , Fototerapia , Diagnóstico por Imagem , Molibdênio , Terapia Fototérmica
5.
BMC Cancer ; 20(1): 740, 2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32770988

RESUMO

BACKGROUND: Precision oncology pharmacotherapy relies on precise patient-specific alterations that impact drug responses. Due to rapid advances in clinical tumor sequencing, an urgent need exists for a clinical support tool that automatically interprets sequencing results based on a structured knowledge base of alteration events associated with clinical implications. RESULTS: Here, we introduced the Oncology Pharmacotherapy Decision Support System (OncoPDSS), a web server that systematically annotates the effects of alterations on drug responses. The platform integrates actionable evidence from several well-known resources, distills drug indications from anti-cancer drug labels, and extracts cancer clinical trial data from the ClinicalTrials.gov database. A therapy-centric classification strategy was used to identify potentially effective and non-effective pharmacotherapies from user-uploaded alterations of multi-omics based on integrative evidence. For each potentially effective therapy, clinical trials with faculty information were listed to help patients and their health care providers find the most suitable one. CONCLUSIONS: OncoPDSS can serve as both an integrative knowledge base on cancer precision medicine, as well as a clinical decision support system for cancer researchers and clinical oncologists. It receives multi-omics alterations as input and interprets them into pharmacotherapy-centered information, thus helping clinicians to make clinical pharmacotherapy decisions. The OncoPDSS web server is freely accessible at https://oncopdss.capitalbiobigdata.com .


Assuntos
Bases de Dados Factuais , Sistemas de Apoio a Decisões Clínicas , Neoplasias/tratamento farmacológico , Neoplasias/genética , Medicina de Precisão , Navegador , Antineoplásicos/uso terapêutico , Ensaios Clínicos como Assunto , Humanos , Anotação de Sequência Molecular , Interface Usuário-Computador
6.
Ecotoxicol Environ Saf ; 165: 450-458, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30218968

RESUMO

To explore the possible roles of metallothioneins (MTs) played in cadmium (Cd) accumulation of water spinach, three IaMT genes, IaMT1, IaMT2 and IaMT3 in a high-shoot-Cd (T308) and a low-shoot-Cd accumulation cultivar (QLQ) were cloned, characterized, and quantitated. Gene expression analysis suggested that the expression of the IaMTs was differentially regulated by Cd stress in different cultivars, and T308 showed higher MTs expression overall. Furthermore, only shoot IaMT3 expression was cultivar dependent among the three IaMTs. Antioxidant analysis showed that the high production of IaMTs in T308 should be associated with its high oxidation resistance. The role of IaMTs in protecting against Cd toxicity was demonstrated in vitro via recombinant E. coli strains. The results showed that IaMT1 correlated with neither Cd tolerance nor Cd accumulation of E. coli, while IaMT2 conferred Cd tolerance in E. coli, IaMT2 and IaMT3 increased Cd accumulation in E. coli. These findings help to clarify the roles of IaMTs in Cd accumulation, and increase our understanding of the cultivar-dependent Cd accumulation in water spinach.


Assuntos
Cádmio/metabolismo , Poluentes Ambientais/metabolismo , Ipomoea/metabolismo , Metalotioneína/metabolismo , Spinacia oleracea/metabolismo , Escherichia coli/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Metalotioneína/genética , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo
7.
Environ Sci Technol ; 50(12): 6485-94, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27228483

RESUMO

To reduce cadmium (Cd) pollution of food chains, screening and breeding of low-Cd-accumulating cultivars are the focus of much study. Two previously identified genotypes, a low-Cd-accumulating genotype (LAJK) and a high-Cd-accumulating genotype (HAJS) of pakchoi (Brassica chinesis L.), were stressed by Cd (12.5 µM) for 0 h (T0), 3 h (T3) and 24 h (T24). By comparative transcriptome analysis for root tissue, 3005 and 4343 differentially expressed genes (DEGs) were identified in LAJK at T3 (vs T0) and T24 (vs T3), respectively, whereas 8677 and 5081 DEGs were detected in HAJS. Gene expression pattern analysis suggested a delay of Cd responded transcriptional changes in LAJK compared to HAJS. DEG functional enrichments proposed genotype-specific biological processes coped with Cd stress. Cell wall biosynthesis and glutathione (GSH) metabolism were found to involve in Cd resistance in HAJS, whereas DNA repair and abscisic acid (ABA) signal transduction pathways played important roles in LAJK. Furthermore, the genes participating in Cd efflux such as PDR8 were overexpressed in LAJK, whereas those responsible for Cd transport such as YSL1 were more enhanced in HAJS, exhibiting different Cd transport processes between two genotypes. These novel findings should be useful for molecular assisted screening and breeding of low-Cd-accumulating genotypes for pakchoi.


Assuntos
Brassica/metabolismo , Cádmio/metabolismo , Perfilação da Expressão Gênica , Genótipo , Transcriptoma
8.
Int J Phytoremediation ; 18(11): 1148-54, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27348198

RESUMO

Response of castor (Ricinus communis L.) to cadmium (Cd) was assessed by a seed-suspending seedbed approach. Length of total radicle was the most sensitive indicator of Cd tolerance among the tested germination and growth characters. The ED50 value for Cd was 11.87 mg L(-1), indicating high Cd tolerance in castor. A pot experiment was conducted by growing 46 varieties of castor under CK (without Cd) and Cd1 (10 mg kg(-1) of Cd) and Cd2 (50 mg kg(-1) of Cd) treatments to investigate genotype variations in growth response and Cd accumulation of castor under different Cd exposures. Castor possessed high Cd accumulation ability; average shoot and root Cd concentrations of the 46 tested varieties were 21.83 and 185.43 mg kg(-1), and 174.99 and 1181.96 mg kg(-1) under Cd1 and Cd2, respectively. Great variation in Cd accumulation was observed among varieties, and Cd concentration of castor was genotype dependent. The correlation between biomass and Cd accumulation was significantly positive, while no significant correlation was observed between Cd concentration and Cd accumulation, which indicated that biomass performance is the dominant factor in determining Cd accumulation ability.


Assuntos
Cádmio/metabolismo , Ricinus communis/genética , Ricinus communis/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Ricinus communis/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento
9.
J Org Chem ; 79(3): 936-42, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24392993

RESUMO

A Cu-catalyzed three-component reaction of alkyne, azides (sulfonyl or phosphoryl azides), and N,N-dialkyloxyformamide dialkyl acetal via electrophilic addition of immonium ion to copper ketenimine is reported. This new protocol for the preparation of α,ß-unsaturated amidine derivatives appears to offer high yield, mild conditions, and wide substrate scope. The reaction might involve the processes of copper ketenimine intermediate formation, electrophilic addition, and isomerization.


Assuntos
Amidinas/síntese química , Azidas/química , Cobre/química , Amidinas/química , Catálise , Isomerismo , Estrutura Molecular
10.
J Hazard Mater ; 465: 133365, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38163407

RESUMO

The molecular mechanisms underlying high and low cadmium (Cd) accumulation in hot pepper cultivars remain unclear. In this study, comparative transcriptome analysis of root between high-Cd (J) and low-Cd (Z) cultivars was conducted under hydroponic cultivation with 0 and 0.4 mg/L Cd, respectively. The results showed that J enhanced the root uptake of Cd by elevating the expression of Nramp5 and counteracting Cd toxicity by increasing the expression of genes, such as NIR1, GLN1, and IAA9. Z reduced Cd accumulation by enhancing the cell wall lignin synthesis genes PAL, COMT, 4CL, LAC, and POD and the Cd transporters ABC, MTP1, and DTX1. Elevated expression of genes related to sulfur metabolism was observed in Z, potentially contributing to its ability to detoxify Cd. To investigate the function of CaCOMT1, an Arabidopsis thaliana overexpression line (OE-CaCOMT1) was constructed. The results revealed that OE-CaCOMT1 drastically increased the lignin content by 38-42% and reduced the translocation of Cd to the aboveground parts by 32%. This study provides comprehensive insights into the mechanisms underlying Cd accumulation in hot pepper cultivars using transcriptome analysis. Moreover, this study elucidates the critical function of CaCOMT1, providing a theoretical foundation for the production of low-Cd vegetables for food safety.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Capsicum , Poluentes do Solo , Cádmio/metabolismo , Capsicum/genética , Capsicum/metabolismo , Arabidopsis/metabolismo , Lignina/metabolismo , Raízes de Plantas/metabolismo , Perfilação da Expressão Gênica , Poluentes do Solo/metabolismo , Nitrito Redutases/metabolismo , Proteínas de Arabidopsis/genética
11.
Environ Sci Pollut Res Int ; 31(8): 11873-11885, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224442

RESUMO

Phytoremediation is a widely used and cost-effective technique for in situ remediation of heavy metals. Brassica napus L. genotype with high Cd accumulation and strong Cd tolerance is an ideal candidate for phytoremediation. In this study, a hydroponic experiment was conducted to select a Brassica napus genotype with either high or low Cd accumulation from a panel of 55 genotypes. The physiological mechanisms governing Cd accumulation and Cd tolerance were then explored. BN400 and BN147 were identified as the high and low Cd accumulating genotypes, respectively. Additionally, BN400 exhibited greater tolerance to Cd stress compared to BN147. Root morphology analysis revealed that BN400 exhibited longer root length, smaller root surface area and root volume, and less root tips but bigger root diameter than BN147. Subcellular Cd distribution showed that the Cd concentrations in the cell wall and vacuole in shoot were significantly higher in BN400 than in BN147, whereas the opposite trend was observed in the roots.. Pectate/protein-integrated Cd was found to be the predominant form of Cd in both shoots and roots, with significantly higher levels in BN400 compared to BN147 in the shoot, but the opposite trend was observed in the roots. These results suggest that the long fine roots play a role in Cd accumulation. The high Cd accumulating genotype was able to retain Cd in leaf cell walls and vacuoles, and Cd was mainly present in the form of pectate/protein-integrated Cd, which contributes to its strong Cd tolerance. These findings have important implications for the screening and breeding of Brassica napus genotypes with high Cd accumulation for phytoremediation purposes.


Assuntos
Brassica napus , Metais Pesados , Poluentes do Solo , Cádmio/análise , Melhoramento Vegetal , Metais Pesados/análise , Hidroponia , Poluentes do Solo/análise , Raízes de Plantas , Biodegradação Ambiental
12.
Nat Commun ; 15(1): 3902, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724527

RESUMO

Radiation-induced in situ tumor vaccination alone is very weak and insufficient to elicit robust antitumor immune responses. In this work, we address this issue by developing chiral vidarabine monophosphate-gadolinium nanowires (aAGd-NWs) through coordination-driven self-assembly. We elucidate the mechanism of aAGd-NW assembly and characterize their distinct features, which include a negative surface charge, ultrafine topography, and right-handed chirality. Additionally, aAGd-NWs not only enhance X-ray deposition but also inhibit DNA repair, thereby enhancing radiation-induced in situ vaccination. Consequently, the in situ vaccination induced by aAGd-NWs sensitizes radiation enhances CD8+ T-cell-dependent antitumor immunity and synergistically potentiates the efficacy immune checkpoint blockade therapies against both primary and metastatic tumors. The well-established aAGd-NWs exhibit exceptional therapeutic capacity and biocompatibility, offering a promising avenue for the development of radioimmunotherapy approaches.


Assuntos
Nanofios , Polímeros , Nanofios/química , Animais , Camundongos , Polímeros/química , Linhagem Celular Tumoral , Gadolínio/química , Gadolínio/farmacologia , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Vacinas Anticâncer/imunologia , Feminino , Humanos , Vacinação/métodos , Neoplasias/imunologia
13.
Sci Total Environ ; 903: 166264, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37579800

RESUMO

Soil cadmium (Cd) contamination threatens food safety and human health, particularly in developing countries. Previously, we have proposed that boron (B) could reduce Cd uptake and accumulation in hot peppers (Capsicum annuum) by regulating the expression of genes related to Cd transport in roots. However, only few studies have examined the role of B in plant leaves under Cd stress. It is unclear how B induces the expression of relevant genes and metabolites in hot pepper leaves and to what extent B is involved in leaf growth and Cd accumulation. The purpose of this study was to investigate the effects of B on growth and Cd accumulation in hot pepper leaves by determining physiological parameters and transcriptome sequencing. The results showed that B application significantly improved the concentration of chlorophyll a and intercellular CO2, stomatal conductance, and photosynthetic and transpiration rates by 18-41 % in Cd-stressed plants. Moreover, B enhanced Cd retention in the cell wall by upregulating the expression levels of pectin-, lignin-, and callose-related genes and improving the activity of pectin methylesterase by 30 %, resulting in an approximate 31 % increase in Cd retention in the cell wall. Furthermore, B application not only enhanced the expression levels of genes related to antioxidant enzymes (superoxide dismutase, catalase, and peroxidase) and their activities by 28-40 %, thereby counteracting Cd-induced oxidative stress, but also improved Cd chelation, sequestration, and exclusion by upregulating the expression levels of genes related to sulfur metabolism, heavy metal-associated isoprenylated plant protein (HIPP), and transporters such as vacuolar cation/proton exchanger (CAX3), metal-nicotianamine transporter (YSL), ATP-binding cassette (ABC), zinc/iron transporters (ZIP) and oxic-compound detoxification (DTX), ultimately reinforcing Cd tolerance. Together, our results suggest that B application reduces the negative effects of Cd on leaf growth, promotes photosynthesis, and decreases Cd transfer to fruits through its sequestration and retention.

14.
J Agric Food Chem ; 71(6): 2784-2794, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36727512

RESUMO

Proteomic analysis and biochemical tests were employed to investigate the critical biological processes responsible for the different cadmium (Cd) accumulations between two water spinach (Ipomoea aquatica) cultivars, QLQ and T308. QLQ, with lower shoot Cd accumulation and translocation factor than T308, possessed higher expression of cell wall biosynthesis and modification proteins in roots, together with higher lignin and pectin contents, higher pectin methylesterase activity, and lower pectin methylation. The results demonstrated that QLQ could more effectively restrict root-to-shoot Cd translocation by compartmentalizing more Cd in root cell walls. In contrast, T308 showed higher expression of the tricarboxylic acid (TCA) cycle, glutathione (GSH) metabolism, and heavy metal transporter proteins, accompanied by higher GSH content and glutathione S-transferase (GST) and glutathione reductase (GR) activity, which accelerated Cd uptake and translocation in T308. These findings revealed several critical biological processes responsible for cultivar-dependent Cd accumulation in water spinach, which are important for elucidating Cd accumulation and transport mechanisms in different cultivars.


Assuntos
Fenômenos Biológicos , Ipomoea , Poluentes do Solo , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Ciclo do Ácido Cítrico , Ipomoea/química , Proteômica , Pectinas/metabolismo , Parede Celular/química , Raízes de Plantas/química
15.
Adv Healthc Mater ; 12(22): e2300267, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37231587

RESUMO

Developing multifunctional nanozymes with photothermal-augmented enzyme-like reaction dynamics in the second near-infrared (NIR-II) biowindow is of significance for nanocatalytic therapy (NCT). Herein, DNA-templated Ag@Pd alloy nanoclusters (DNA-Ag@Pd NCs) are prepared as a kind of novel noble-metal alloy nanozymes by using cytosine-rich hairpin-shaped DNA structures as growth templates. DNA-Ag@Pd NCs exhibit high photothermal conversion efficiency (59.32%) under 1270 nm laser and photothermally augmented peroxidase-mimicking activity with synergetic enhancement between Ag and Pd. In addition, hairpin-shaped DNA structures on the surface of DNA-Ag@Pd NCs endow them with good stability and biocompatibility in vitro and in vivo, and enhanced permeability and retention effect at tumor sites. Upon intravenous injection, DNA-Ag@Pd NCs demonstrate high-contrast NIR-II photoacoustic imaging-guided efficient photothermal-augmented NCT of gastric cancer. This work provides a strategy to synthesize versatile noble-metal alloy nanozymes in a bioinspired way for highly efficient therapy of tumors.


Assuntos
Neoplasias , Técnicas Fotoacústicas , Humanos , Luz , Neoplasias/terapia , Terapia Fototérmica , Ligas , Fototerapia , Linhagem Celular Tumoral
16.
Environ Sci Pollut Res Int ; 30(45): 101168-101177, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648912

RESUMO

Cadmium (Cd) contamination and boron (B) deficiency are two major challenges associated with the farmland soils in Southern China. Therefore, this study was conducted to examine the impacts of B supply on Cd accumulation in water spinach (Ipomoea aquatica) using a cultivar (T308) with high Cd accumulation. The study further investigated the physiological mechanism behind the changes in Cd accumulation due to B supply. The findings revealed that B supply substantially reduced the Cd concentration in the leaves of water spinach by 41.20% and 37.16% under the Cd stress of 10 µM and 25 µM, respectively. Subcellular distribution of Cd showed that the Cd content as well as its proportion in root cell wall (RCW) increased significantly after B supply. Fourier transform infrared spectroscopy showed significant enrichment of negatively charged groups (such as -OH, -COOH, and -NH2) in the RCW after B supply. Overall, B supply also enhanced covalently bound pectin (CSP) content as well as the Cd content linked with CSP under Cd stress. These observations revealed that B regulated the Cd chelation in RCW, thereby reducing the amassment of Cd in water spinach.

17.
Exp Ther Med ; 26(1): 320, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37273757

RESUMO

Pachymic acid (Pac), a major bioactive constituent of Poria cocos, is an antioxidant that inhibits triglyceride (TG) accumulation. To the best of our knowledge, the present study investigated for the first time whether Pac activated sirtuin 6 (SIRT6) signaling to alleviate oleic acid (OA)-palmitic acid (PA)-induced lipid metabolism disorders in mouse primary hepatocytes (MPHs). In the present study, MPHs challenged with Pac were used to test the effects of Pac on intracellular lipid metabolism. Molecular docking studies were performed to explore the potential targets of Pac in defending against lipid deposition. MPHs isolated from liver-specific SIRT6-deficient mice were subjected to OA + PA incubation and treated with Pac to determine the function and detailed mechanism. It was revealed that Pac activated SIRT6 by increasing its expression and deacetylase activity. Pa prevented OA + PA-induced lipid deposition in MPHs in a dose-dependent manner. Pac (50 µM) administration significantly reduced TG accumulation and increased fatty acid oxidation rate in OA + PA-incubated MPHs. Meanwhile, as per the results of molecular docking and relative mRNA levels, Pac activated SIRT6 and increased SIRT6 deacetylation levels. Furthermore, SIRT6 deletions in MPHs abolished the protective effects of Pac against OA + PA-induced hepatocyte lipid metabolism disorders. The present study demonstrated that Pac alleviates OA + PA-induced hepatocyte lipid metabolism disorders by activating SIRT6 signaling. Overall, SIRT6 signaling increases oxidative stress burden and promotes hepatocyte lipolysis.

18.
Environ Sci Pollut Res Int ; 29(24): 36824-36838, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35064501

RESUMO

We aimed to understand the molecular mechanism of differential cadmium (Cd) accumulation in two cultivars of sweet potato and to clarify the effects of potassium (K) supply on Cd accumulation. Comparative transcriptomes were employed to identify key genes and pathways using a low-Cd (N88) and a high-Cd cultivar (X16) in a pot experiment. The antioxidant capacity and cell wall components of root tips were analyzed to account for the effect of K regulating Cd accumulation in N88 via a hydroponic experiment. Transcriptome analysis revealed that 29 and 20 genes were differentially expressed in N88 and X16, respectively, when comparing the control with the two Cd treatments. X16 had more differentially expressed genes (DEGs), including 2649 common up-regulated and 3173 common down-regulated than N88 in any treatment. GO and KEGG analyses showed that the DEGs were assigned and enriched in different pathways. Some critical DEGs such as PDR, HMA3, COPT5, CAX3, GAUT, CCR, AUX1, CAT, SOD, GSR, and GST were identified. The DEGs were involved in pathways including heavy metal transport or detoxification, cell wall biosynthesis, plant hormone signal transduction, and glutathione metabolism. Additionally, K supply substantially decreased Cd accumulation and reactive oxygen species production and promoted the production of cellulose, pectin and lignin in the root tips when exposed to Cd. Several critical DEGs associated with heavy metal transport and cell wall biosynthesis were responsible for the difference of Cd accumulation between the two cultivars. Application of K could help decrease Cd accumulation in sweet potato.


Assuntos
Ipomoea batatas , Metais Pesados , Cádmio/análise , Perfilação da Expressão Gênica , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Metais Pesados/metabolismo , Raízes de Plantas/metabolismo , Transcriptoma
19.
J Hazard Mater ; 432: 128713, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35316635

RESUMO

Large areas of farmland in southern China are facing environmental problems such as cadmium (Cd) contamination and boron (B) deficiency. The aim of this study was to investigate the biochemical and molecular mechanisms underlying the reduction in Cd accumulation in hot pepper (Capsicum annuum) by B application. A hydroponic experiment was conducted to compare the subcellular distribution of Cd, transcriptome profile, degree of pectin methylation, and glutathione (GSH) synthesis in the roots of hot pepper under different B and Cd conditions. Boron supply promoted root cell wall biosynthesis and pectin demethylation by upregulating related genes and increasing cell wall Cd concentration by 28%. In addition, with the application of B, the proportion of Cd in root cell walls increased from 27% to 37%. Boron supplementation upregulated sulfur metabolism-related genes but decreased cysteine and GSH contents in the roots. As a result, shoot Cd concentration decreased by 27% due to the decrease in GSH, a critical long-distance transport carrier of Cd. Consequently, B supply could reduce the uptake, translocation, and accumulation of Cd in hot pepper by retaining Cd in the root cell walls and decreasing GSH content.


Assuntos
Capsicum , Poluentes do Solo , Boro/análise , Cádmio/análise , Cádmio/toxicidade , Parede Celular/química , Glutationa/análise , Pectinas , Raízes de Plantas/química , Poluentes do Solo/análise
20.
Environ Sci Pollut Res Int ; 29(27): 41375-41385, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35089521

RESUMO

MicroRNAs (miRNAs) play important roles in plant response to Cd stress. In our previous study, we observed significant differences in the expression levels of IamiR-4-3p between high-Cd and low-Cd cultivars of water spinach. The function of IamiR-4-3p was investigated by using wild type Arabidopsis (WT), Arabidopsis transfected with empty vector pCambia1302 (CK), and Arabidopsis transfected with IamiR-4-3p + vector pCambia1302 (p35S::miR-4-3p) in this study. In p35S::miR-4-3p Arabidopsis, the expression levels of GST3 and AWPM19-like were reduced by 20% and 24%. Under Cd treatment, higher root and shoot Cd concentrations were detected in the transgenic p35S::miR-4-3p Arabidopsis. MDA and H2O2 concentrations were positively correlated with the Cd concentrations in all Arabidopsis. The elevated GSH pool in p35S::miR-4-3p Arabidopsis should compensate for its restricted GST3 expression in response to Cd-induced oxidative stress. Lower F1 (cell wall) and higher F2 (organelle) and F3 (soluble fraction) Cd concentrations were observed along with the reduced ABA level in p35S::miR-4-3p Arabidopsis, which could induce a weakened apoplastic barrier and higher Cd accumulation and translocation in roots. It is suggested that IamiR-4-3p is able to reduce the expression levels of GST3 and AWPM19-like, resulting in higher Cd uptake and translocation in Arabidopsis.


Assuntos
Arabidopsis , Ipomoea , MicroRNAs , Arabidopsis/genética , Arabidopsis/metabolismo , Cádmio/metabolismo , Peróxido de Hidrogênio/metabolismo , Ipomoea/genética , MicroRNAs/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA