Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 239(Pt 1): 117280, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37793586

RESUMO

Uranium contamination and remediation is a very important environmental research area. Removing radioactive and toxic uranium from contaminated media requires fundamental knowledge of targets and materials. To explore the-State-of-the-Art in uranium contamination control, we employed a statistical tool called CiteSpace to visualize and statistically analyze 4203 peer-reviewed papers on uranium treatment published between 2008 and 2022. The primary content presentations of visual analysis were co-authorships, co-citations, keyword co-occurrence analysis with cluster analysis, which could offer purposeful information of research hots and trends in the field of uranium removal. The statistical analysis results indicated that studies on uranium removal have focused on adsorption of uranium from aqueous solution. From 2008 to 2022, biochar and biological treatment were firstly used to sequester uranium, then adsorption for uranium removal dominates with adsorbents of graphene oxide, primary nanofiber magnetic polymers and metal-organic frameworks (MOFs). In recent years, photocatalysts and metal-organic frameworks are expected to be two of the most popular research topics. In addition, we further highlighted the characteristics and applications of MOFs and GOs in uranium removal. Overall, a statistical review was proposed to visualize and summarize the knowledge and research trends regarding uranium treatment.


Assuntos
Estruturas Metalorgânicas , Urânio , Adsorção , Análise por Conglomerados , Temperatura Alta
2.
Environ Res ; 214(Pt 4): 114085, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35987376

RESUMO

Cesium (Cs) is a byproduct of nuclear bombs, nuclear weapons testing, and nuclear fission in nuclear reactors. Cs can enter the human body through food or air and cause lasting damage. Highly efficient and selective removal of 137Cs from low-level radioactive effluents (LLREs), which contain many radionuclides and dissolved heavy metal species, is imperative for minimizing LLRE volume, and facilitating their final disposal. Prussian blue analogs (PBAs) have received much attention as materials for the removal of radioactive Cs because of their affinity for adsorbing Cs+. In this study, an inexpensive and readily available cyanide-based functional material (PBACu) exhibiting high efficiency and excellent selectivity toward Cs capture was designed through a facile low-temperature co-precipitation process. Nano-PBACu, crystallizing in the cubic space group (Fm-3m (225)), has an average pore size of 6.53 nm; consequently, PBACu can offer abundant atomic occupation sites for capturing and incorporating Cs. Here, the pseudo-second-order kinetic model and Langmuir model fitted well with the adsorption of Cs + on PBACu, with a maximum capture capacity of 95.75 mg/g within 5 min, confirming that PBACu could rapidly capture Cs ions. PBACu strongly and selectively interacted with Cs even in a simulant containing large Na+, NH4+, Ca2+, and Mg2+ ion concentrations in an aqueous solution. The process of Cs + adsorption by cyanide-based functional crystals was confirmed to involve the entry of Cs+ into cyanide-based functional crystals to replace K+ and finally achieve the lattice incorporation of Cs. The current results broaden the lattice theory of radionuclide Cs removal and provide a promising alternative for the immobilization of Cs from radioactive wastewater.


Assuntos
Césio , Cianetos , Adsorção , Césio/química , Humanos , Concentração de Íons de Hidrogênio , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA