Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
NPJ Digit Med ; 7(1): 145, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831093

RESUMO

Digital twins represent a promising technology within the domain of precision healthcare, offering significant prospects for individualized medical interventions. Existing systematic reviews, however, mainly focus on the technological dimensions of digital twins, with a limited exploration of their impact on health-related outcomes. Therefore, this systematic review aims to explore the efficacy of digital twins in improving precision healthcare at the population level. The literature search for this study encompassed PubMed, Embase, Web of Science, Cochrane Library, CINAHL, SinoMed, CNKI, and Wanfang Database to retrieve potentially relevant records. Patient health-related outcomes were synthesized employing quantitative content analysis, whereas the Joanna Briggs Institute (JBI) scales were used to evaluate the quality and potential bias inherent in each selected study. Following established inclusion and exclusion criteria, 12 studies were screened from an initial 1321 records for further analysis. These studies included patients with various conditions, including cancers, type 2 diabetes, multiple sclerosis, heart failure, qi deficiency, post-hepatectomy liver failure, and dental issues. The review coded three types of interventions: personalized health management, precision individual therapy effects, and predicting individual risk, leading to a total of 45 outcomes being measured. The collective effectiveness of these outcomes at the population level was calculated at 80% (36 out of 45). No studies exhibited unacceptable differences in quality. Overall, employing digital twins in precision health demonstrates practical advantages, warranting its expanded use to facilitate the transition from the development phase to broad application.PROSPERO registry: CRD42024507256.

2.
Biol Res Nurs ; 25(2): 185-197, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36218132

RESUMO

BACKGROUND: Gestational diabetes mellitus (GDM) is a common pregnancy complication that negatively impacts the health of both the mother and child. Early prediction of the risk of GDM may permit prompt and effective interventions. This systematic review and meta-analysis aimed to summarize the study characteristics, methodological quality, and model performance of first-trimester prediction model studies for GDM. METHODS: Five electronic databases, one clinical trial register, and gray literature were searched from the inception date to March 19, 2022. Studies developing or validating a first-trimester prediction model for GDM were included. Two reviewers independently extracted data according to an established checklist and assessed the risk of bias by the Prediction Model Risk of Bias Assessment Tool (PROBAST). We used a random-effects model to perform a quantitative meta-analysis of the predictive power of models that were externally validated at least three times. RESULTS: We identified 43 model development studies, six model development and external validation studies, and five external validation-only studies. Body mass index, maternal age, and fasting plasma glucose were the most commonly included predictors across all models. Multiple estimates of performance measures were available for eight of the models. Summary estimates range from 0.68 to 0.78 (I2 ranged from 0% to 97%). CONCLUSION: Most studies were assessed as having a high overall risk of bias. Only eight prediction models for GDM have been externally validated at least three times. Future research needs to focus on updating and externally validating existing models.


Assuntos
Diabetes Gestacional , Complicações na Gravidez , Gravidez , Feminino , Criança , Humanos , Diabetes Gestacional/diagnóstico , Primeiro Trimestre da Gravidez , Previsões , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA