Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 201(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30745367

RESUMO

Mycobacterium tuberculosis utilizes fatty acids of the host as the carbon source. Metabolism of odd-chain fatty acids by Mycobacterium tuberculosis produces propionyl coenzyme A (propionyl-CoA). The methylcitrate cycle is essential for mycobacteria to utilize the propionyl-CoA to persist and grow on these fatty acids. In M. smegmatis, methylcitrate synthase, methylcitrate dehydratase, and methylisocitrate lyase involved in the methylcitrate cycle are encoded by prpC, prpD, and prpB, respectively, in operon prpDBC In this study, we found that the nitrogen regulator GlnR directly binds to the promoter region of the prpDBC operon and inhibits its transcription. The binding motif of GlnR was identified by bioinformatic analysis and validated using DNase I footprinting and electrophoretic mobility shift assays. The GlnR-binding motif is separated by a 164-bp sequence from the binding site of PrpR, a pathway-specific transcriptional activator of methylcitrate cycle, but the binding affinity of GlnR to prpDBC is much stronger than that of PrpR. Deletion of glnR resulted in faster growth in propionate or cholesterol medium compared with the wild-type strain. The ΔglnR mutant strain also showed a higher survival rate in macrophages. These results illustrated that the nitrogen regulator GlnR regulates the methylcitrate cycle through direct repression of the transcription of the prpDBC operon. This finding not only suggests an unprecedented link between nitrogen metabolism and the methylcitrate pathway but also reveals a potential target for controlling the growth of pathogenic mycobacteria.IMPORTANCE The success of mycobacteria survival in macrophage depends on its ability to assimilate fatty acids and cholesterol from the host. The cholesterol and fatty acids are catabolized via ß-oxidation to generate propionyl coenzyme A (propionyl-CoA), which is then primarily metabolized via the methylcitrate cycle. Here, we found a typical GlnR binding box in the prp operon, and the affinity is much stronger than that of PrpR, a transcriptional activator of methylcitrate cycle. Furthermore, GlnR repressed the transcription of the prp operon. Deletion of glnR significantly enhanced the growth of Mycobacterium tuberculosis in propionate or cholesterol medium, as well as viability in macrophages. These findings provide new insights into the regulatory mechanisms underlying the cross talk of nitrogen and carbon metabolisms in mycobacteria.


Assuntos
Proteínas de Bactérias/biossíntese , Citratos/metabolismo , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas/genética , Mycobacterium smegmatis/enzimologia , Proteínas Repressoras/metabolismo , Transcrição Gênica , Sítios de Ligação , Carbono-Carbono Liases/biossíntese , Citrato (si)-Sintase/biossíntese , DNA Bacteriano/metabolismo , Deleção de Genes , Hidroliases/biossíntese , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Óperon , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/genética
2.
FEMS Microbiol Lett ; 365(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29590418

RESUMO

AccD6 is an important component of acetyl-CoA/propionyl-CoA carboxylase, which acts as a key role in mycolic acid synthesis and short chain fatty acyl-coenzyme A metabolism. In this study, we demonstrated that AccD6 of Mycobacterium smegmatis associates with AccA3 (α subunit of acetyl-CoA carboxylase, MSMEG_1807) and AccE (ε subunit, MSMEG_1812) to form the acetyl-CoA (propionyl-CoA) carboxylase. Results showed that the MSMEG_4331 subunit is a regulator that interacts with the promoter region of accD6 to inhibit its transcription. Transcription of accD6 was reduced by 50% in the mutant M. smegmatis strain overexpressing MSMEG_4331. Moreover, the activity of AccD6 was inhibited by acylation (such as acetylation and propionylation). These results demonstrate that AccD6 of M. smegmatis is regulated at both the transcriptional and post-translational levels. Our findings highlight the novel regulatory mechanism underlying mycolic acid biosynthesis in mycobacteria.


Assuntos
Acetil-CoA Carboxilase/genética , Proteínas de Bactérias/genética , Carbono-Carbono Ligases/genética , Regulação Enzimológica da Expressão Gênica , Mycobacterium smegmatis/enzimologia , Transcrição Gênica , Acetil-CoA Carboxilase/metabolismo , Acetilação , Acil Coenzima A/metabolismo , Proteínas de Bactérias/metabolismo , Carbono-Carbono Ligases/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium smegmatis/genética , Ligação Proteica , Processamento Pós-Transcricional do RNA
3.
Front Microbiol ; 9: 1311, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29988377

RESUMO

Assimilation of short-chain fatty acids (SCFAs) plays an important role in the survival and lipid biosynthesis of Mycobacteria. However, regulation of this process has not been thoroughly described. In the present work, we demonstrate that GlnR as a well-known nitrogen-sensing regulator transcriptionally modulates the AMP-forming propionyl-CoA synthetase (MsPrpE), and acetyl-CoA synthetases (MsAcs) is associated with SCFAs assimilation in Mycobacterium smegmatis, a model Mycobacterium. GlnR can directly activate the expression of MsprpE and Msacs by binding to their promoter regions based upon sensed nitrogen starvation in the host. Moreover, GlnR can activate the expression of lysine acetyltransferase encoding Mspat, which significantly decreases the activity of MsPrpE and MsAcs through increased acylation. Next, growth curves and resazurin assay show that GlnR can further regulate the growth of M. smegmatis on different SCFAs to control the viability. These results demonstrate that GlnR-mediated regulation of SCFA assimilation in response to the change of nitrogen signal serves to control the survival of M. smegmatis. These findings provide insights into the survival and nutrient utilization mechanisms of Mycobacteria in their host, which may enable new strategies in drug discovery for the control of tuberculosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA