Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 489
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2318160121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38598339

RESUMO

Organic carbon availability in soil is crucial for shaping microbial communities, yet, uncertainties persist concerning microbial adaptations to carbon levels and the ensuing ecological and evolutionary consequences. We investigated organic carbon metabolism, antibiotic resistance, and virus-host interactions in soils subjected to 40 y of chemical and organic fertilization that led to contrasting carbon availability: carbon-poor and carbon-rich soils, respectively. Carbon-poor soils drove the enrichment of putative genes involved in organic matter decomposition and exhibited specialization in utilizing complex organic compounds, reflecting scramble competition. This specialization confers a competitive advantage of microbial communities in carbon-poor soils but reduces their buffering capacity in terms of organic carbon metabolisms, making them more vulnerable to environmental fluctuations. Additionally, in carbon-poor soils, viral auxiliary metabolic genes linked to organic carbon metabolism increased host competitiveness and environmental adaptability through a strategy akin to "piggyback the winner." Furthermore, putative antibiotic resistance genes, particularly in low-abundance drug categories, were enriched in carbon-poor soils as an evolutionary consequence of chemical warfare (i.e., interference competition). This raises concerns about the potential dissemination of antibiotic resistance from conventional agriculture that relies on chemical-only fertilization. Consequently, carbon starvation resulting from long-term chemical-only fertilization increases microbial adaptations to competition, underscoring the importance of implementing sustainable agricultural practices to mitigate the emergence and spread of antimicrobial resistance and to increase soil carbon storage.


Assuntos
Carbono , Solo , Solo/química , Carbono/metabolismo , Agricultura/métodos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Microbiologia do Solo
2.
PLoS Genet ; 20(5): e1011282, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38768261

RESUMO

Light as a source of information regulates morphological and physiological processes of fungi, including development, primary and secondary metabolism, or the circadian rhythm. Light signaling in fungi depends on photoreceptors and downstream components that amplify the signal to govern the expression of an array of genes. Here, we investigated the effects of red and far-red light in the mycoparasite Trichoderma guizhouense on its mycoparasitic potential. We show that the invasion strategy of T. guizhouense depends on the attacked species and that red and far-red light increased aerial hyphal growth and led to faster overgrowth or invasion of the colonies. Molecular experiments and transcriptome analyses revealed that red and far-red light are sensed by phytochrome FPH1 and further transmitted by the downstream MAPK HOG pathway and the bZIP transcription factor ATF1. Overexpression of the red- and far-red light-induced fluffy gene fluG in the dark resulted in abundant aerial hyphae formation and thereby improvement of its antagonistic ability against phytopathogenic fungi. Hence, light-induced fluG expression is important for the mycoparasitic interaction. The increased aggressiveness of fluG-overexpressing strains was phenocopied by four random mutants obtained after UV mutagenesis. Therefore, aerial hyphae formation appears to be a trait for the antagonistic potential of T. guizhouense.


Assuntos
Regulação Fúngica da Expressão Gênica , Hifas , Luz , Fitocromo , Trichoderma , Hifas/crescimento & desenvolvimento , Hifas/genética , Fitocromo/metabolismo , Fitocromo/genética , Trichoderma/genética , Trichoderma/fisiologia , Trichoderma/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Rhizoctonia/crescimento & desenvolvimento , Luz Vermelha
3.
Proc Natl Acad Sci U S A ; 121(43): e2401523121, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39401358

RESUMO

Asymmetric seasonal warming trends are evident across terrestrial ecosystems, with winter temperatures rising more than summer ones. Yet, the impact of such asymmetric seasonal warming on soil microbial carbon metabolism and growth remains poorly understood. Using 18O isotope labeling, we examined the effects of a decade-long experimental seasonal warming on microbial carbon use efficiency (CUE) and growth in alpine grassland ecosystems. Moreover, the quantitative stable isotope probing with 18O-H2O was employed to evaluate taxon-specific bacterial growth in these ecosystems. Results show that symmetric year-round warming decreased microbial growth rate by 31% and CUE by 22%. Asymmetric winter warming resulted in a further decrease in microbial growth rate of 27% and microbial CUE of 59% compared to symmetric year-round warming. Long-term warming increased microbial carbon limitations, especially under asymmetric winter warming. Long-term warming suppressed the growth rates of most bacterial genera, with asymmetric winter warming having a stronger inhibition on the growth rates of specific genera (e.g., Gp10, Actinomarinicola, Bosea, Acidibacter, and Gemmata) compared to symmetric year-round warming. Bacterial growth was phylogenetically conserved, but this conservation diminished under warming conditions, primarily due to shifts in bacterial physiological states rather than the number of bacterial species and community composition. Overall, long-term warming escalated microbial carbon limitations, decreased microbial growth and CUE, with asymmetric winter warming having a more pronounced effect. Understanding these impacts is crucial for predicting soil carbon cycling as global warming progresses.


Assuntos
Bactérias , Carbono , Estações do Ano , Microbiologia do Solo , Solo , Carbono/metabolismo , Solo/química , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Bactérias/classificação , Aquecimento Global , Ecossistema , Pradaria , Ciclo do Carbono
4.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37249547

RESUMO

Pathogen detection from biological and environmental samples is important for global disease control. Despite advances in pathogen detection using deep learning, current algorithms have limitations in processing long genomic sequences. Through the deep cross-fusion of cross, residual and deep neural networks, we developed DCiPatho for accurate pathogen detection based on the integrated frequency features of 3-to-7 k-mers. Compared with the existing state-of-the-art algorithms, DCiPatho can be used to accurately identify distinct pathogenic bacteria infecting humans, animals and plants. We evaluated DCiPatho on both learned and unlearned pathogen species using both genomics and metagenomics datasets. DCiPatho is an effective tool for the genomic-scale identification of pathogens by integrating the frequency of k-mers into deep cross-fusion networks. The source code is publicly available at https://github.com/LorMeBioAI/DCiPatho.


Assuntos
Algoritmos , Software , Humanos , Redes Neurais de Computação , Genoma , Genômica
5.
Proc Natl Acad Sci U S A ; 119(29): e2201747119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858353

RESUMO

Bacteria have evolved multiple signal transduction systems that permit an adaptation to changing environmental conditions. Chemoreceptor-based signaling cascades are very abundant in bacteria and are among the most complex signaling systems. Currently, our knowledge on the molecular features that determine signal recognition at chemoreceptors is limited. Chemoreceptor McpA of Bacillus velezensis SQR9 has been shown to mediate chemotaxis to a broad range of different ligands. Here we show that its ligand binding domain binds directly 13 chemoattractants. We provide support that organic acids and amino acids bind to the membrane-distal and membrane-proximal module of the dCache domain, respectively, whereas binding of sugars/sugar alcohols occurred at both modules. Structural biology studies combined with site-directed mutagenesis experiments have permitted to identify 10 amino acid residues that play key roles in the recognition of multiple ligands. Residues in membrane-distal and membrane-proximal regions were central for sensing organic acids and amimo acids, respectively, whereas all residues participated in sugars/sugar alcohol sensing. Most characterized chemoreceptors possess a narrow and well-defined ligand spectrum. We propose here a sensing mechanism involving both dCache modules that allows the integration of very diverse signals by a single chemoreceptor.


Assuntos
Bacillus , Proteínas de Bactérias , Quimiotaxia , Proteínas Quimiotáticas Aceptoras de Metil , Bacillus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ligantes , Proteínas Quimiotáticas Aceptoras de Metil/química , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Ligação Proteica , Domínios Proteicos , Açúcares/química
6.
Appl Environ Microbiol ; 90(1): e0156623, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38126758

RESUMO

Microbial interactions affect community stability and niche spaces in all ecosystems. However, it is not clear what factors influence these interactions, leading to changes in species fitness and ecological niches. Here, we utilized 16 monocultures and their corresponding pairwise co-cultures to measure niche changes among 16 cultivable bacterial species in a wide range of carbon sources, and we used resource availability as a parameter to alter the interactions of the synthetic bacterial community. Our results suggest that metabolic similarity drives niche deformation between bacterial species. We further found that resource limitation resulted in increased microbial inhibition and more negative interactions. At high resource availability, bacteria exhibited little inhibitory potential and stronger facilitation (in 71% of cases), promoting niche expansion. Overall, our results show that metabolic similarity induces different degrees of resource competition, altering pairwise interactions within the synthetic community and potentially modulating bacterial niches. This framework may lay the basis for understanding complex niche deformation and microbial interactions as modulated by metabolic similarity and resource availability.IMPORTANCEUnderstanding the intricate dynamics of microbial interactions is crucial for unraveling the stability and ecological roles of diverse ecosystems. However, the factors driving these interactions, leading to shifts in species fitness and ecological niches, remain inadequately explored. We demonstrate that metabolic similarity serves as a key driver of niche deformation between bacterial species. Resource availability emerges as a pivotal parameter, affecting interactions within the community. Our findings reveal heightened microbial inhibition and more negative interactions under resource-limited conditions. The prevalent facilitation is observed under conditions of high resource availability, underscoring the potential for niche expansion in such contexts. These findings emphasize that metabolic similarity induces varying degrees of resource competition, thereby altering pairwise interactions within the synthetic community and potentially modulating bacterial niches. Our workflow has broad implications for understanding the roles of metabolic similarity and resource availability in microbial interactions and for designing synthetic microbial communities.


Assuntos
Bactérias , Microbiota , Interações Microbianas , Carbono
7.
Appl Environ Microbiol ; 90(9): e0068124, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39109875

RESUMO

Parasitism is an important lifestyle in the Trichoderma genus but has not been studied in a genus-wide way toward Pythium and Globisporangium hosts. Our approach screened a genus-wide set of 30 Trichoderma species in dual culture assays with two soil-borne Pythium and three Globisporangium plant-parasitic species and used exo-proteomic analyses, with the aim to correlate Trichoderma antagonism with potential strategies for attacking Pythium and Globisporangium. The Trichoderma spp. showed a wide range of antagonism from strong to weak, but the same Trichoderma strain showed similar levels toward all the Pythium and Globisporangium species. The Trichoderma enzymes from strong (Trichoderma asperellum, Trichoderma atroviride, and Trichoderma virens), moderate (Trichoderma cf. guizhouense and Trichoderma reesei), and weak (Trichoderma parepimyces) antagonists were induced by the autoclaved mycelia of one of the screened Pythium species, Pythium myriotylum. The variable proportions of putative cellulases, proteases, and redox enzymes suggested diverse as well as shared strategies amongst the antagonists. There was a partial positive correlation between antagonism from microscopy and the cellulase activity induced by autoclaved P. myriotylum mycelia in different Trichoderma species. The deletion of the cellulase transcriptional activator XYR1 in T. reesei led to lower antagonism toward Pythium and Globisporangium. The antagonism of Pythium and Globisporangium appears to be a generic property of Trichoderma as most of the Trichoderma species were at least moderately antagonistic. While a role for cellulases in the antagonism was uncovered, cellulases did not appear to make a major contribution to T. reesei antagonism, and other factors are also likely contributing.IMPORTANCETrichoderma is an important genus widely distributed in nature with broad ecological impacts and applications in the biocontrol of plant diseases. The Pythium and Globisporangium genera of fungus-like water molds include many important soil-borne plant pathogens that cause various diseases. Most of the Trichoderma species showed at least a moderate ability to compete with or antagonize the Pythium and Globisporangium hosts, and microscopy showed examples of parasitism (a slow type of killing) and predation (a fast type of killing). Hydrolytic enzymes such as cellulases and proteases produced by Trichoderma likely contribute to the antagonism. A mutant deficient in cellulase activity had reduced antagonism. Interestingly, Pythium and Globisporangium species contain cellulose in their cell walls (unlike true fungi such as Trichoderma), and the cellulolytic ability of Trichoderma appears beneficial for antagonism of water molds.


Assuntos
Celulases , Doenças das Plantas , Pythium , Trichoderma , Pythium/enzimologia , Trichoderma/enzimologia , Trichoderma/genética , Celulases/metabolismo , Celulases/genética , Doenças das Plantas/microbiologia , Antibiose , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hypocreales/enzimologia , Hypocreales/genética
8.
New Phytol ; 242(6): 2401-2410, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38494698

RESUMO

The rhizosphere microbiome plays critical roles in plant growth and provides promising solutions for sustainable agriculture. While the rhizosphere microbiome frequently fluctuates with the soil environment, recent studies have demonstrated that a small proportion of the microbiome is consistently assembled in the rhizosphere of a specific plant genotype regardless of the soil condition, which is determined by host genetics. Based on these breakthroughs, which involved exploiting the plant-beneficial function of the rhizosphere microbiome, we propose to divide the rhizosphere microbiome into environment-dominated and plant genetic-dominated components based on their different assembly mechanisms. Subsequently, two strategies to explore the different rhizosphere microbiome components for agricultural production are suggested, that is, the precise management of the environment-dominated rhizosphere microbiome by agronomic practices, and the elucidation of the plant genetic basis of the plant genetic-dominated rhizosphere microbiome for breeding microbiome-assisted crop varieties. We finally present the major challenges that need to be overcome to implement strategies for modulating these two components of the rhizosphere microbiome.


Assuntos
Agricultura , Microbiota , Rizosfera , Agricultura/métodos , Produtos Agrícolas/microbiologia , Desenvolvimento Sustentável , Microbiologia do Solo
9.
Artigo em Inglês | MEDLINE | ID: mdl-38767617

RESUMO

A Gram-stain-negative bacterium, designated LG-2T, was isolated from sludge collected at a pesticide-manufacturing factory in Jiangsu Province, PR China. Cells of strain LG-2T were strictly aerobic, non-motile and spherical. Growth was observed at 15-42 °C (optimum, 30 °C), pH 6.0-9.0 (optimum, pH 7.0) and 0-3.0 % (w/v) NaCl (optimum, 1.0 %). LG-2T showed 95.5-96.9 % 16S rRNA sequence similarity to type strains in the genera Pusillimonas, Bordetella, Parapusillimonas, Candidimonas and Paracandidimonas of the family Alcaligenaceae. The phylogenomic tree indicated that strain LG-2T was clustered in the family Alcaligenaceae and formed a clade with Paracandidimonas soli IMT-305T, while the phylogenetic trees based on 16S rRNA gene sequences indicated that strain LG-2T formed a distinct clade within the family Alcaligenaceae. The average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values between LG-2T and its closely related type strains in the genera Pusillimonas, Bordetella, Parapusillimonas, Candidimonas and Paracandidimonas were 70.8-75.3, 18.9-23.7 and 59.6 %-69.3 %, respectively. The major cellular fatty acids were C16 : 0, C17 : 0 cyclo, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and summed feature 2 (C12 : 0 aldehyde and/or unknown 10.928). The predominant menaquinone was Q-8. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, two aminophospholipids, three aminolipids and nine unknown polar lipids. The genome size of strain LG-2T was 3.2 Mb and the DNA G+C content was 63.4 mol%. On the basis of the phenotypic, phylogenetic and genomic results from this study, strain LG-2T represents a novel species of a new genus in the family Alcaligenaceae, for which the name Yanghanlia caeni gen. nov., sp. nov. is proposed, with strain LG-2T (=KCTC 8084T= CCTCC AB 2023123T) as the type strain.


Assuntos
Alcaligenaceae , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Esgotos , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Ácidos Graxos/análise , DNA Bacteriano/genética , China , Esgotos/microbiologia , Alcaligenaceae/genética , Alcaligenaceae/classificação , Alcaligenaceae/isolamento & purificação , Praguicidas , Vitamina K 2/análogos & derivados , Vitamina K 2/análise
10.
Artigo em Inglês | MEDLINE | ID: mdl-39312393

RESUMO

A Gram-stain-negative, non-spore-forming and strictly aerobic bacterial strain, designated R-7T, was isolated from river sediment in Wuxi, Jiangsu, PR China. Cells (1.6-3.8 µm long and 0.6-0.8 µm wide) were slightly curved to straight rods and motile by means of a polar flagellum. The strain grew optimally on Reasoner's 2A medium at 30 °C, pH 7.0 and with 1.0% (w/v) NaCl. Strain R-7T exhibited closest 16S rRNA gene sequence similarities to Dongia mobilis CGMCC 1.7660T (95.4%), D. rigui 04SU4-PT (94.6%) and D. soli D78T (93.8%). The phylogenetic trees based on genomic and 16S rRNA gene sequences showed that strain R-7T was clustered in the genus Dongia. The obtained average nucleotide identity and digital DNA-DNA hybridization values between R-7T and the three type strains of the genus Dongia were 73.4, 72.8 and 72.4% and 19.5, 19.0 and 18.7%, respectively. The major respiratory quinone was Q-10. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, three unidentified aminolipids, two unidentified aminophospholipids and nine unidentified polar lipids. The major cellular fatty acids (>5% of the total) were cyclo-C19 : 0 ω8c, C16 : 0 and C16 : 0 2-OH. The DNA G+C content was 65.5 mol%. On the basis of the evidence presented in this study, strain R-7T represents a novel species of the genus Dongia, for which the name Dongia sedimenti sp. nov. is proposed, with strain R-7T (=KCTC 8082T=MCCC 1K08805T) as the type strain.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Sedimentos Geológicos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Rios , Análise de Sequência de DNA , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Rios/microbiologia , China , DNA Bacteriano/genética , Ubiquinona
11.
Artigo em Inglês | MEDLINE | ID: mdl-38546460

RESUMO

A Gram-stain-negative bacterium, designated as R-40T, was isolated from sediment of the Mulong river in Mianyang city, Sichuan province, PR China. The cells of strain R-40T were aerobic non-motile and formed translucent white colonies on R2A agar. Growth occurred at 15-37 °C (optimum 30 °C), pH 5.0-9.0 (optimum 7.0) and salinities of 0-3.0 % (w/v, optimum 0 %). R-40T showed 95.2-96.6 % 16S rRNA gene sequence similarities with the type strains of species of the genera Oxalicibacterium, Herminiimonas, Lacisediminimonas, Paucimonas, Herbaspirillum and Noviherbaspirillum in the family Oxalobacteraceae. The results of phylogenetic analysis based on genome sequences indicated that the strain was clustered with type strains of species of the genera Oxalicibacterium and Herminiimonas in the family Oxalobacteraceae but formed a distinct lineage. The average nucleotide identity (ANI), digital DNA-DNA hybridization (dDDH) and average amino acid identity (AAI) values between R-40T and type strains of species of the genera Oxalicibacterium, Herminiimonas, Lacisediminimonas, Paucimonas, Herbaspirillum and Noviherbaspirillum ranged from 69.3 to 74.1 %, from 18.2 to 21.4 % and from 60.1 to 67.4 %, respectively. The major cellular fatty acids were C16 : 0, C17 : 0 cyclo and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c). The major quinone was ubiquinone-8 (Q-8). The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phospholipid and small amounts of glycophospholipids. The genome size of R-40T was 5.1 Mbp with 54.0 % DNA G+C content. On the basis of the evidence presented in this study, strain R-40T represents a novel species of a novel genus in the family Oxalobacteraceae, for which the name Keguizhuia sedimenti gen. nov., sp. nov. (type strain R-40T=MCCC 1K08818T=KCTC 8137T) is proposed.


Assuntos
Compostos Azo , Burkholderiaceae , Herbaspirillum , Oxalobacteraceae , Filogenia , RNA Ribossômico 16S/genética , Rios , Composição de Bases , Ácidos Graxos/química , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Oxalobacteraceae/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-38530752

RESUMO

A Gram-stain-positive bacterium, designated YN-L-19T, was isolated from a sludge sample collected from a pesticide-manufacturing plant. Cells of YN-L-19T were strictly aerobic, non-spore-forming, non-motile and ovoid-shaped. Colonies were small, smooth and yellow. Growth occurred at 10-37 °C (optimum, 30 °C), pH 5.0-9.0 (optimum, 7.0) and 0-3.0 % (w/v) NaCl (optimum 0.5 %). Phylogenetic analysis based on genome and 16S rRNA gene sequences indicated that YN-L-19T was affiliated to the family Microbacteriaceae and most closely related to Diaminobutyricimonas aenilata, Terrimesophilobacter mesophilus, Planctomonas deserti and Curtobacterium luteum. The major cellular fatty acids of YN-L-19T were anteiso-C15 : 0, anteiso-C17 : 0, iso-C16 : 0 and C16 : 0. The predominant menaquinone was MK-7. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, glycolipid and one unidentified lipid. The average amino acid identity values between strain YN-L-19T and the related strains were 57.9-61.9 %, which were below the genus boundary (70 %). On the basis of the evidence presented in this study, strain YN-L-19T represents a novel species of a new genus in the family Microbacteriaceae, for which the name Ruicaihuangia caeni gen. nov., sp. nov. (type strain YN-L-19T=CCTCC AB 2022401T= KCTC 49935T) is proposed.


Assuntos
Actinomycetales , Ácidos Graxos , Ácidos Graxos/química , Esgotos , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Composição de Bases , Peptidoglicano/química , Bactérias Gram-Positivas , Vitamina K 2/química
13.
Artigo em Inglês | MEDLINE | ID: mdl-38668744

RESUMO

A Gram-stain-negative bacterium, designated LG-4T, was isolated from sediment of Qiantang River in Zhejiang Province, PR China. Cells were strictly aerobic, non-spore-forming, non-motile and short-rod-shaped (1.0-1.2 µm long and 0.7-0.8 µm wide). Growth occurred at 15-42 °C (optimum, 30 °C), at pH 5.0-9.0 (pH 7.0) and at 0-2.0 % (w/v) NaCl (optimum, 0.5 % NaCl). Strain LG-4T showed 95.75-96.90 % 16S rRNA gene sequence similarity to various type strains of the genera Tabrizicola, Pseudotabrizicola, Phaeovulum, Rhodobacter and Wagnerdoeblera of the family Paracoccaceae, and the most closely related strain was Tabrizicola soli ZQBWT (96.90 % similarity). The phylogenomic tree showed that strain LG-4T clustered in the family Paracoccaceae and was positioned outside of the clade composed of the genera Wagnerdoeblera and Falsigemmobacter. The average nucleotide identity and digital DNA-DNA hybridization values between strain LG-4T and the related type strains were in the range of 74.19-77.56 % and 16.70-25.80 %, respectively. The average amino acid identity (AAI) values between strain LG-4T and related type strains of the family Paracoccaceae were 60.94-69.73 %, which are below the genus boundary (70 %). The evolutionary distance (ED) values between LG-4T and the related genera of the family Paracoccaceae were 0.21-0.34, which are within the recommended standard (≥0.21-0.23) for defining a novel genus in the family Paracoccaceae. The predominant cellular fatty acids were C18 : 1 ω7c, C19 : 0 cyclo ω8c, C18 : 0 and C16 : 0, the isoprenoid quinone was Q-10, and the major polar lipids were phospholipid, phosphatidylglycerol, phosphatidylcholine, aminolipid and two unknown polar lipids. The genome size was 4.7 Mb with 68.6 mol% G+C content. On the basis of distinct phylogenetic relationships, low AAI values and high ED values, and differential phenotypic, physiological and biochemical characteristics, strain LG-4T represents a novel species of a new genus in the family Paracoccaceae, for which the name Ruixingdingia sedimenti gen. nov., sp. nov. is proposed. The type strain is LG-4T (=MCCC 1K08849T=KCTC 8136T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Sedimentos Geológicos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Rios , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Ácidos Graxos/análise , DNA Bacteriano/genética , China , Sedimentos Geológicos/microbiologia , Rios/microbiologia , Fosfolipídeos/análise , Ubiquinona/análogos & derivados
14.
Artigo em Inglês | MEDLINE | ID: mdl-38634749

RESUMO

A Gram-stain-negative bacterium, designated XZ-24T, was isolated from sediment of a river in Mianyang city, Sichuan province, PR China. Cells (1.0-2.0 µm long and 0.4-0.5 µm in width) were strictly aerobic, non-spore-forming, rod shaped, prosthecate and motile by means of a polar flagellum. Growth occurred at 10-37 °C (optimum, 30 °C), at pH 5.0-9.0 (optimum pH 7.0) and with 0-3.0 % (w/v) NaCl (optimum 1.0 % NaCl). The results of phylogenetic analysis based on genomes and 16S rRNA gene sequences indicated that XZ-24T formed a distinct phyletic branch within the family Caulobacteraceae and was most closely related to members of the genera Brevundimonas, Caulobacter and Phenylobacterium with 95.3-96.5 % 16S rRNA gene sequence similarities. The average amino acid identities (AAI) between XZ-24T and species of the family Caulobacteraceae were 47.0-64.5 %, which were below the genus boundary (70 %). The predominant cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), C16 : 0, C18 : 1ω7c 11-methyl and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), the isoprenoid quinone was Q-10, and the major polar lipids were 1,2-di-O-acyl-3-O-α-d-glucopyranuronosyl glycerol; 1,2-di-O-acyl-3-O-[d-glucopyranosyl-(1→4)-α-d glucopyranuronosyl] glycerol and phosphatidylglycerol. The genome size of XZ-24T was 2.64 Mb with a DNA G+C content of 68.9 %. On the basis of the evidence presented in this study, strain XZ-24T represents a novel species of a novel genus in the family Caulobacteraceae, for which the name Peiella sedimenti gen. nov., sp. nov. (Type strain XZ-24T=CCTCC AB 20 23 094T=KCTC 8038T) is proposed.


Assuntos
Caulobacteraceae , Rios , Composição de Bases , Ácidos Graxos/química , Glicerol , Filogenia , RNA Ribossômico 16S/genética , Cloreto de Sódio , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana
15.
Microb Cell Fact ; 23(1): 120, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664812

RESUMO

BACKGROUND: The conversion of plant biomass into biochemicals is a promising way to alleviate energy shortage, which depends on efficient microbial saccharification and cellular metabolism. Trichoderma spp. have plentiful CAZymes systems that can utilize all-components of lignocellulose. Acetylation of polysaccharides causes nanostructure densification and hydrophobicity enhancement, which is an obstacle for glycoside hydrolases to hydrolyze glycosidic bonds. The improvement of deacetylation ability can effectively release the potential for polysaccharide degradation. RESULTS: Ammonium sulfate addition facilitated the deacetylation of xylan by inducing the up-regulation of multiple carbohydrate esterases (CE3/CE4/CE15/CE16) of Trichoderma harzianum. Mainly, the pathway of ammonium-sulfate's cellular assimilates inducing up-regulation of the deacetylase gene (Thce3) was revealed. The intracellular metabolite changes were revealed through metabonomic analysis. Whole genome bisulfite sequencing identified a novel differentially methylated region (DMR) that existed in the ThgsfR2 promoter, and the DMR was closely related to lignocellulolytic response. ThGsfR2 was identified as a negative regulatory factor of Thce3, and methylation in ThgsfR2 promoter released the expression of Thce3. The up-regulation of CEs facilitated the substrate deacetylation. CONCLUSION: Ammonium sulfate increased the polysaccharide deacetylation capacity by inducing the up-regulation of multiple carbohydrate esterases of T. harzianum, which removed the spatial barrier of the glycosidic bond and improved hydrophilicity, and ultimately increased the accessibility of glycosidic bond to glycoside hydrolases.


Assuntos
Esterases , Metionina , Esterases/metabolismo , Esterases/genética , Metionina/metabolismo , Xilanos/metabolismo , Sulfato de Amônio/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Hypocreales/metabolismo , Hypocreales/enzimologia , Hypocreales/genética , Lignina/metabolismo , Acetilação
16.
Antonie Van Leeuwenhoek ; 117(1): 32, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329631

RESUMO

A Gram-stain-positive, facultatively anaerobic, rod-shaped bacterium, designated JX-17T, was isolated from a soil sample collected in Jiangxi Province, PR China. Growth was observed at 15-48 °C (optimum 37 °C), at pH 5.0-9.0 (optimum pH 7.0) and with 0-6.0% (w/v) NaCl (optimum 1.0%). Strain JX-17T could degrade approximately 50% of 50 mg/L mesotrione within 2 days of incubation, but could not use mesotrione as sole carbon source for growth. Strain JX-17T showed less than 95.3% 16S rRNA gene sequence similarity with type strains of the genus Paenibacillus. In the phylogenetic tree based on 16S rRNA gene and genome sequences, strain JX-17T formed a distinct lineage within the genus Paenibacillus. The ANI values between JX-17T and the most closely related type strains P. lentus CMG1240T and P. farraposensis UY79T were 70.1% and 71.4%, respectively, and the dDDH values between them were 19.0% and 23.3%, respectively. The major cellular fatty acids were anteiso-C15:0, iso-C16:0, anteiso-C17:0 and C16:0, the predominant respiratory quinone was MK-7, the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unidentified glycolipid, an aminophospholipid and a phosphatidylinositol. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid, and the DNA G + C content was 50.1 mol%. Based on the phylogenetic, phenotypic and chemotaxonomic characteristics, strain JX-17T represents a novel species within the genus Paenibacillus, for which the name Paenibacillus lacisoli sp. nov is proposed, with strain JX-17T (= GDMCC 1.3962T = KCTC 43568T) as the type strain.


Assuntos
Cicloexanonas , Paenibacillus , Fosfolipídeos , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , DNA Bacteriano/química , Hibridização de Ácido Nucleico , Ácidos Graxos/análise , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
17.
PLoS Genet ; 17(11): e1009924, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34788288

RESUMO

Higher fungi can rapidly produce large numbers of spores suitable for aerial dispersal. The efficiency of the dispersal and spore resilience to abiotic stresses correlate with their hydrophobicity provided by the unique amphiphilic and superior surface-active proteins-hydrophobins (HFBs)-that self-assemble at hydrophobic/hydrophilic interfaces and thus modulate surface properties. Using the HFB-enriched mold Trichoderma (Hypocreales, Ascomycota) and the HFB-free yeast Pichia pastoris (Saccharomycetales, Ascomycota), we revealed that the rapid release of HFBs by aerial hyphae shortly prior to conidiation is associated with their intracellular accumulation in vacuoles and/or lipid-enriched organelles. The occasional internalization of the latter organelles in vacuoles can provide the hydrophobic/hydrophilic interface for the assembly of HFB layers and thus result in the formation of HFB-enriched vesicles and vacuolar multicisternal structures (VMSs) putatively lined up by HFBs. These HFB-enriched vesicles and VMSs can become fused in large tonoplast-like organelles or move to the periplasm for secretion. The tonoplast-like structures can contribute to the maintenance of turgor pressure in aerial hyphae supporting the erection of sporogenic structures (e.g., conidiophores) and provide intracellular force to squeeze out HFB-enriched vesicles and VMSs from the periplasm through the cell wall. We also show that the secretion of HFBs occurs prior to the conidiation and reveal that the even spore coating of HFBs deposited in the extracellular matrix requires microscopic water droplets that can be either guttated by the hyphae or obtained from the environment. Furthermore, we demonstrate that at least one HFB, HFB4 in T. guizhouense, is produced and secreted by wetted spores. We show that this protein possibly controls spore dormancy and contributes to the water sensing mechanism required for the detection of germination conditions. Thus, intracellular HFBs have a range of pleiotropic functions in aerial hyphae and spores and are essential for fungal development and fitness.


Assuntos
Parede Celular/genética , Proteínas Fúngicas/genética , Esporos Fúngicos/genética , Trichoderma/genética , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Interações Hidrofóbicas e Hidrofílicas , Hifas/genética , Hifas/crescimento & desenvolvimento , Hypocreales/genética , Hypocreales/crescimento & desenvolvimento , Esporos Fúngicos/crescimento & desenvolvimento , Trichoderma/crescimento & desenvolvimento
18.
Ecotoxicol Environ Saf ; 283: 116982, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39217893

RESUMO

The spread of antibiotic resistance genes (ARGs) and subsequent soil-borne disease outbreaks are major threats to soil health and sustainable crop production. However, the relationship between occurrences of soil-borne diseases and the transmission of soil ARGs remains unclear. Here, soil ARGs, mobile genetic elements and microbial communities from co-located disease suppressive and conducive banana orchards were deciphered using metagenomics and metatranscriptomics approaches. In total, 23 ARG types, with 399 subtypes, were detected using a metagenomics approach, whereas 23 ARG types, with 452 subtypes, were discovered using a metatranscriptomics method. Furthermore, the metagenomics analysis revealed that the ARG total abundance levels were greater in rhizospheres (0.45 ARGs/16S rRNA on average) compared with bulk (0.32 ARGs/16S rRNA on average) soils. Interestingly, metatranscriptomics revealed that the total ARG abundances were greater in disease-conducive (8.85 ARGs/16S rRNA on average) soils than disease suppressive (1.45 ARGs/16S rRNA on average) soils. Mobile genetic elements showed the same trends as ARGs. Network and binning analyses indicated that Mycobacterium, Streptomyces, and Blastomonas are the main potential hosts of ARGs. Furthermore, Bacillus was significantly and negatively correlated with Fusarium (P < 0.05, r = -0.84) and hosts of ARGs (i.e., Mycobacterium, Streptomyces, and Blastomonas). By comparing metagenomic and metatranscriptomic analyses,this study demonstrated that metatranscriptomics may be more sensitive in indicating ARGs activities in soil. Our findings enable the more accurate assessment of the transmission risk of ARGs. The data provide a new perspective for recognizing soil health, in which soil-borne disease outbreaks appear to be associated with ARG spread, whereas beneficial microbe enrichment may mitigate wilt disease and ARG transmission.


Assuntos
Resistência Microbiana a Medicamentos , Fusarium , Musa , Microbiologia do Solo , Musa/microbiologia , Fusarium/genética , Resistência Microbiana a Medicamentos/genética , Doenças das Plantas/microbiologia , Solo/química , Metagenômica , RNA Ribossômico 16S/genética
19.
J Environ Manage ; 364: 121379, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38870787

RESUMO

Chemical nutrient amendment by human activities can lead to environmental impacts contributing to global biodiversity loss. However, the comprehensive understanding of how below- and above-ground biodiversity shifts under fertilization regimes in natural ecosystems remains elusive. Here, we conducted a seven-year field experiment (2011-2017) and examined the effects of different fertilization on plant biodiversity and soil belowground (prokaryotic and eukaryotic) communities in the alpine meadow of the Tibetan Plateau, based on data collected in 2017. Our results indicate that nitrogen addition promoted total plant biomass but reduced the plant species richness. Conversely, phosphorus enrichment did not promote plant biomass and exhibited an unimodal pattern with plant richness. In the belowground realm, distinct responses of soil prokaryotic and eukaryotic communities were observed under fertilizer application. Specifically, soil prokaryotic diversity decreased with nitrogen enrichment, correlating with shifts in soil pH. Similarly, soil eukaryotic diversity decreased with increased phosphorous inputs, aligning with the equilibrium between soil available and total phosphorus. We also established connections between these soil organism communities with above-ground plant richness and biomass. Overall, our study contributes to a better understanding of the sustainable impacts of human-induced nutrient enrichment on the natural environment. Future research should delve deeper into the long-term effects of fertilization on soil health and ecosystem functioning, aiming to achieve a balance between agricultural productivity and environmental conservation.


Assuntos
Biodiversidade , Fertilizantes , Solo , Tibet , Solo/química , Ecossistema , Fósforo/análise , Microbiologia do Solo , Biomassa , Nitrogênio , Agricultura
20.
Mol Plant Microbe Interact ; 36(8): 516-528, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37188493

RESUMO

Gibberella stalk rot (GSR) caused by the fungus Fusarium graminearum is a devastating disease of maize (Zea mays L.), but we lack efficient methods to control this disease. Biological control agents, including beneficial microorganisms, can be used as an effective and eco-friendly approach to manage crop diseases. For example, Bacillus velezensis SQR9, a bacterial strain isolated from the rhizosphere of cucumber plants, promotes growth and suppresses diseases in several plant species. However, it is not known whether and how SQR9 affects maize resistance to GSR. In this study, we found that treatment with SQR9 increased maize resistance to GSR by activating maize induced systemic resistance (ISR). RNA-seq and quantitative reverse transcription-PCR analysis showed that phenylpropanoid biosynthesis, amino acid metabolism, and plant-pathogen interaction pathways were enriched in the root upon colonization by SQR9. Also, several genes associated with calcium signaling pathways were up-regulated by SQR9 treatment. However, the calcium signaling inhibitor LaCl3 weakened the SQR9-activated ISR. Our data suggest that the calcium signaling pathway contributes to maize GSR resistance via the activation of ISR induced by SQR9. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Cucumis sativus , Fusarium , Gibberella , Gibberella/fisiologia , Zea mays/microbiologia , Sinalização do Cálcio , Resistência Sistêmica Adquirida da Planta , Fusarium/fisiologia , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA