RESUMO
Glycoproteomic analysis of three Chinese hamster ovary (CHO) suspension host cell lines (CHO-K1, CHO-S, and CHO-Pro5) commonly utilized in biopharmaceutical settings for recombinant protein production is reported. Intracellular and secreted glycoproteins were examined. We utilized an immobilization and chemoenzymatic strategy in our analysis. Glycoproteins or glycopeptides were first immobilized through reductive amination, and the sialyl moieties were amidated for protection. The desired N- or O-glycans and glycopeptides were released from the immobilization resin by enzymatic or chemical digestion. Glycopeptides were studied by Orbitrap Liquid chromatography-mass spectrometry (LC/MS), and the released glycans were analyzed by Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Differences were detected in the relative abundances of N- and O-glycopeptide types, their resident and released glycans, and their glycoprotein complexity. Ontogeny analysis revealed key differences in features, such as general metabolic and biosynthetic pathways, including glycosylation systems, as well as distributions in cellular compartments. Host cell lines and subfraction differences were observed in both N- and O-glycan and glycoprotein pools. Differences were observed in sialyl and fucosyl glycan distributions. Key differences were also observed among glycoproteins that are problematic contaminants in recombinant antibody production. The differences revealed in this study should inform the choice of cell lines best suited for a particular bioproduction application.
Assuntos
Produtos Biológicos , Glicopeptídeos , Animais , Células CHO , Cricetinae , Cricetulus , Glicopeptídeos/análise , Glicoproteínas/metabolismo , Polissacarídeos/química , Proteínas Recombinantes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodosRESUMO
In mammalian cells, N-glycans may include multiple N-acetyllactosamine (poly-LacNAc) units that can play roles in various cellular functions and properties of therapeutic recombinant proteins. Previous studies indicated that ß-1,3-N-acetylglucosaminyltransferase 2 (B3GNT2) and ß-1,4-galactotransferase 1 (B4GALT1) are two of the primary glycosyltransferases involved in generating LacNAc units. In the current study, knocking out sialyltransferase genes slightly enhanced the LacNAc content (≥4 repeats per glycan) on recombinant EPO protein. Next, the role of single and dual-overexpression of B3GNT2 and B4GALT1 was explored in recombinant EPO-expressing Chinese hamster ovary (CHO) cells. While overexpression of B4GALT1 slightly enhanced the levels of large glycans on recombinant EPO, overexpression of B3GNT2 in EPO-expressing CHO cells significantly decreased the recombinant EPO LacNAc content, resulting in N-glycans terminating primarily with GlcNAc structures, a limited number of Gals, and nearly undetectable sialylation, which was also observed in sialyltransferases knock-out-B3GNT2 overexpression cell lines. Considering the nature of the binding domain motifs present on B3GNT2, which evolved from ß1,3-galactosyltransferases, its overexpression may have competed and inhibited endogenous ß1,4-galactosyltransferases for exposed GlcNAc residues on the N-glycans, resulting in premature termination of many N-glycans at GlcNAc. Furthermore, B3GNT2 overexpression enhanced intracellular UDP-GlcNAc and CMP-Neu5Ac content while slightly lowering UDP-Gal content. The presence of a sink for UDP-GlcNAc in the form of B3GNT2 with no disposition may have also elevated the intracellular levels of this nucleotide as well as its downstream product, CMP-Neu5Ac. Furthermore, we were unable to overexpress B4GALT1 at either the transcriptional or translational levels following initial B3GNT2 expression. Expression of B3GNT2 following initial expression of B4GALT1 was also problematic in that transcriptional and translational analysis indicated the accumulation of truncated B3GNT2 missing a section of the B3GNT2 trans-Golgi lumen domain while transmembrane and cytoplasmic domains were present. Given that glycosylation is a very complex intra-network process, the addition of one or more recombinant glycosyltransferases may have an unexpected influence on the expression and activities of glycosyltransferases, which can disrupt the nucleotide sugar levels and lead to unexpected modifications of the resulting N-glycan patterns.
Assuntos
Metabolismo dos Carboidratos , Glicosiltransferases , Engenharia Metabólica , Polissacarídeos , Animais , Células CHO , Cricetulus , Glicosilação , Glicosiltransferases/biossíntese , Glicosiltransferases/genética , Polissacarídeos/biossíntese , Polissacarídeos/genéticaRESUMO
BACKGROUND: Reference genes are often interchangeably called housekeeping genes due to 1) the essential cellular functions their proteins provide and 2) their constitutive expression across a range of normal and pathophysiological conditions. However, given the proliferative drive of malignant cells, many reference genes such as beta-actin (ACTB) and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) which play critical roles in cell membrane organization and glycolysis, may be dysregulated in tumors versus their corresponding normal controls METHODS: Because Next Generation Sequencing (NGS) technology has several advantages over hybridization-based technologies, such as independent detection and quantitation of transcription levels, greater sensitivity, and increased dynamic range, we evaluated colorectal cancers (CRC) and their histologically normal tissue counterparts by NGS to evaluate the expression of 21 "classical" reference genes used as normalization standards for PCR based methods. Seventy-nine paired tissue samples of CRC and their patient matched healthy colonic tissues were subjected to NGS analysis of their mRNAs. RESULTS: We affirmed that 17 out of 21 classical reference genes had upregulated expression in tumors compared to normal colonic epithelial tissue and dramatically so in some cases. Indeed, tumors were distinguished from normal controls in both unsupervised hierarchical clustering analyses (HCA) and principal component analyses (PCA). We then identified 42 novel potential reference genes with minimal coefficients of variation (CV) across 79 CRC tumor pairs. Though largely consistently expressed across tumors and normal control tissues, a subset of high stage tumors (HSTs) as well as some normal tissue samples (HSNs) located adjacent to these HSTs demonstrated dysregulated expression, thus identifying a subset of tumors with a potentially distinct and aggressive biological profile. CONCLUSION: While classical CRC reference genes were found to be differentially expressed between tumors and normal controls, novel reference genes, identified via NGS, were more consistently expressed across malignant and normal colonic tissues. Nonetheless, a subset of HST had profound dysregulation of such genes as did many of the histologically normal tissues adjacent to such HSTs, indicating that the HSTs so distinguished may have unique biological properties and that their histologically normal tissues likely harbor a small population of microscopically undetected but metabolically active tumors.
Assuntos
Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica/genética , Estudos de Associação Genética , Predisposição Genética para Doença/genética , Actinas/genética , Actinas/metabolismo , Biomarcadores Tumorais/genética , Colo/patologia , Neoplasias Colorretais/patologia , Feminino , Perfilação da Expressão Gênica , Genes Essenciais/genética , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , RNA Mensageiro , Análise de Sequência de RNARESUMO
BACKGROUND: Current library preparation protocols for Illumina HiSeq and MiSeq DNA sequencers require ≥2 nM initial library for subsequent loading of denatured cDNA onto flow cells. Such amounts are not always attainable from samples having a relatively low DNA or RNA input; or those for which a limited number of PCR amplification cycles is preferred (less PCR bias and/or more even coverage). A well-tested sub-nanomolar library preparation protocol for Illumina sequencers has however not been reported. The aim of this study is to provide a much needed working protocol for sub-nanomolar libraries to achieve outcomes as informative as those obtained with the higher library input (≥ 2 nM) recommended by Illumina's protocols. RESULTS: Extensive studies were conducted to validate a robust sub-nanomolar (initial library of 100 pM) protocol using PhiX DNA (as a control), genomic DNA (Bordetella bronchiseptica and microbial mock community B for 16S rRNA gene sequencing), messenger RNA, microRNA, and other small noncoding RNA samples. The utility of our protocol was further explored for PhiX library concentrations as low as 25 pM, which generated only slightly fewer than 50% of the reads achieved under the standard Illumina protocol starting with > 2 nM. CONCLUSIONS: A sub-nanomolar library preparation protocol (100 pM) could generate next generation sequencing (NGS) results as robust as the standard Illumina protocol. Following the sub-nanomolar protocol, libraries with initial concentrations as low as 25 pM could also be sequenced to yield satisfactory and reproducible sequencing results.
Assuntos
Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Bordetella bronchiseptica/genética , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Genoma Bacteriano , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , Análise de Sequência de RNARESUMO
Glycosylation plays a critical role in the biosynthetic-secretory pathway in the endoplasmic reticulum (ER) and Golgi apparatus. Over 50% of mammalian cellular proteins are typically glycosylated; this modification is involved in a wide range of biological functions such as barrier formation against intestinal microbes and serves as signaling molecules for selectins and galectins in the innate immune system. N-linked glycosylation analysis has been greatly facilitated owing to a range of specific enzymes available for their release. However, system-wide analysis on O-linked glycosylation remains a challenge due to the lack of equivalent enzymes and the inherent structural heterogeneity of O-glycans. Although O-glycosidase can catalyze the removal of core 1 and core 3 O-linked disaccharides from glycoproteins, analysis of other types of O-glycans remains difficult, particularly when residing on glycopeptides. Here, we describe a novel chemoenzymatic approach driven by a newly available O-protease and solid phase platform. This method enables the assignment of O-glycosylated peptides, N-glycan profile, sialyl O-glycopeptides linkage, and mapping of heterogeneous O-glycosylation. For the first time, we can analyze intact O-glycopeptides generated by O-protease and enriched using a solid-phase platform. We establish the method on standard glycoproteins, confirming known O-glycosites with high accuracy and confidence, and reveal up to 8-fold more glycosites than previously reported with concomitant increased heterogeneity. This technique is further applied for analysis of Zika virus recombinant glycoproteins, revealing their dominant O-glycosites and setting a basis set of O-glycosylation tracts in these important viral antigens. Our approach can serve as a benchmark for the investigation of protein O-glycosylation in diseases and other biomedical contexts. This method should become an indispensable tool for investigations where O-glycosylation is central.
Assuntos
Oxigênio/metabolismo , Proteínas/metabolismo , Glicosilação , Modelos Moleculares , Mucinas/química , Mucinas/metabolismo , Conformação Proteica , Proteínas/química , Proteínas Virais/química , Proteínas Virais/metabolismo , Zika virus/metabolismoRESUMO
Three-dimensional (3D) brain organoids derived from human pluripotent stem cells (hPSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), appear to recapitulate the brain's 3D cytoarchitectural arrangement and provide new opportunities to explore disease pathogenesis in the human brain. Human iPSC (hiPSC) reprogramming methods, combined with 3D brain organoid tools, may allow patient-derived organoids to serve as a preclinical platform to bridge the translational gap between animal models and human clinical trials. Studies using patient-derived brain organoids have already revealed novel insights into molecular and genetic mechanisms of certain complex human neurological disorders such as microcephaly, autism, and Alzheimer's disease. Furthermore, the combination of hiPSC technology and small-molecule high-throughput screening (HTS) facilitates the development of novel pharmacotherapeutic strategies, while transcriptome sequencing enables the transcriptional profiling of patient-derived brain organoids. Finally, the addition of CRISPR/Cas9 genome editing provides incredible potential for personalized cell replacement therapy with genetically corrected hiPSCs. This review describes the history and current state of 3D brain organoid differentiation strategies, a survey of applications of organoids towards studies of neurodevelopmental and neurodegenerative disorders, and the challenges associated with their use as in vitro models of neurological disorders.
Assuntos
Encéfalo/patologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Doenças Neurodegenerativas/patologia , Transtornos do Neurodesenvolvimento/patologia , Organoides/fisiologia , Animais , Encéfalo/crescimento & desenvolvimento , Diferenciação Celular , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Organoides/citologiaRESUMO
PURPOSE: Protein carbonylation is an irreversible modification of Lys, Arg, Thr and Pro amino acids under conditions of oxidative stress. Previous studies have reported specific carbonylated residues in purified recombinant albumins, albeit with a lack of agreement between the studies. Currently, structural factors that determine site-specific protein carbonylation are not well understood. METHODS: In this study, we utilized metal-catalyzed oxidizing conditions to generate carbonylation in recombinant human serum albumin (HSA) and granulocyte-colony stimulating factor (G-CSF), two proteins with distinct metal-binding abilities. To estimate predictability of HSA carbonylation sites, the same oxidative reaction was repeated based on the previously reported conditions. For G-CSF, oxidative conditions were gradually adjusted to achieve substantial levels of protein carbonylation. Corresponding accumulation of specific oxidized residues was identified and confirmed with high-resolution mass spectrometry. RESULTS: Our HSA dataset contained 55 carbonylated residues and showed a significant overlap with the previously published pooled data, indicating a certain level of carbonylation site specificity for albumins. Oxidation of G-CSF under multiple oxidative conditions consistently showed a highly specific carbonylation at position Pro45. We also detected a previously unreported, oxidation-induced cleavage site in G-CSF between His44 and Pro45, which might be attributed to a presence of a potential metal-binding site near residue Pro45. CONCLUSIONS: Our results show distinct patterns of protein carbonylation for HSA and G-CSF. Thus, specificity of protein carbonylation induced by metal-catalyzed oxidation is protein dependent and might be predicted by availability of transition metal binding site(s) within the protein.
Assuntos
Fator Estimulador de Colônias de Granulócitos/química , Metais/química , Carbonilação Proteica , Albumina Sérica/química , Aminoácidos/química , Sítios de Ligação , Biocatálise , Humanos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/químicaRESUMO
Focal adhesions (FAs) undergo maturation that culminates in size and composition changes that modulate adhesion, cytoskeleton remodeling and differentiation. Although it is well recognized that stimuli for osteogenesis of mesenchymal stem cells (MSCs) drive FA maturation, actin organization and stress fiber polarization, the extent to which FA-mediated signals regulated by the FA protein composition specifies MSC commitment remains largely unknown. Here, we demonstrate that, upon dexamethasone (osteogenic induction) treatment, guanine nucleotide exchange factor H1 (GEF-H1, also known as Rho guanine nucleotide exchange factor 2, encoded by ARHGEF2) is significantly enriched in FAs. Perturbation of GEF-H1 inhibits FA formation, anisotropic stress fiber orientation and MSC osteogenesis in an actomyosin-contractility-independent manner. To determine the role of GEF-H1 in MSC osteogenesis, we explore the GEF-H1-modulated FA proteome that reveals non-muscle myosin-II heavy chain-B (NMIIB, also known as myosin-10, encoded by MYH10) as a target of GEF-H1 in FAs. Inhibition of targeting NMIIB into FAs suppresses FA formation, stress fiber polarization, cell stiffness and osteogenic commitments in MSCs. Our data demonstrate a role for FA signaling in specifying MSC commitment.
Assuntos
Adesões Focais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula , Humanos , Osteogênese , Transdução de SinaisRESUMO
Brefeldin A-inhibited guanine nucleotide-exchange protein (BIG)2 activates ADP-ribosylation factors, â¼20-kDa GTPase proteins critical for continuity of intracellular vesicular trafficking by accelerating the replacement of ADP-ribosylation factor-bound GDP with GTP. Mechanisms of additional BIG2 function(s) are less clear. Here, the participation of BIG2 in integrin ß1 cycling through actin dynamics during cell migration was identified using small interfering RNA (siRNA) and difference gel electrophoresis analyses. After a 72-h incubation with BIG2 siRNA, levels of cytosolic Arp2, Arp3, cofilin-1, phosphocofilin, vinculin, and Grb2, known to be involved in the effects of integrin ß1-extracellular matrix interactions on actin function and cell translocation, were increased. Treatment of HeLa cells with BIG2 siRNA resulted in perinuclear accumulation of integrin ß1 and its delayed return to the cell surface. Motility of BIG2-depleted cells was simultaneously decreased, as were actin-based membrane protrusions and accumulations of Arp2, Arp3, cofilin, and phosphocofilin at the leading edges of migrating cells, in wound-healing assays. Taken together, these data reveal a mechanism(s) through which BIG2 may coordinate actin cytoskeleton mechanics and membrane traffic in cell migration via integrin ß1 action and actin functions.
Assuntos
Actinas/fisiologia , Movimento Celular/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Integrina beta1/metabolismo , Primers do DNA/genética , Eletroforese , Proteínas da Matriz Extracelular/metabolismo , Imunofluorescência , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , RNA Interferente Pequeno/administração & dosagem , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Sunitinib resistance creates a major clinical challenge for the treatment of advanced clear cell renal cell carcinoma (ccRCC) and functional and metabolic changes linked to sunitinib resistance are not fully understood. We sought to characterize the molecular and metabolic changes induced by the development of sunitinib resistance in ccRCC by developing and characterizing two human ccRCC cell lines resistant to sunitinib. Consistent with the literature, sunitinib-resistant ccRCC cell lines presented an aberrant overexpression of Axl and PD-L1, as well as a metabolic rewiring characterized by enhanced OXPHOS and glutamine metabolism. Therapeutic challenges of sunitinib-resistant ccRCC cell lines in vitro using small molecule inhibitors targeting Axl, AMPK and p38, as well as using PD-L1 blocking therapeutic antibodies, showed limited CTL-mediated cytotoxicity in a co-culture model. However, the AMPK activator metformin appears to sensitize the effect of PD-L1 blocking therapeutic antibodies and to enhance CTLs' cytotoxic effects on ccRCC cells. These effects were not broadly observed with the Axl and the p38 inhibitors. Taken together, these data suggest that targeting certain pathways aberrantly activated by sunitinib resistance such as the AMPK/PDL1 axis might sensitize ccRCC to immunotherapies as a second-line therapeutic approach.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Sunitinibe/farmacologia , Sunitinibe/uso terapêutico , Carcinoma de Células Renais/patologia , Antígeno B7-H1 , Neoplasias Renais/patologia , Proteínas Quinases Ativadas por AMP , Linhagem Celular Tumoral , Resistencia a Medicamentos AntineoplásicosRESUMO
Glycosylation is generally characterized and controlled as a critical quality attribute for therapeutic glycoproteins because glycans can impact protein drug-product efficacy, half-life, stability, and safety. Analytical procedures to characterize N-glycans are relatively well established, but the characterization of O-glycans is challenging due to the complex workflows and lack of enzymatic tools. Here, we present a simplified chemoenzymatic method to simultaneously profile N- and O-glycans from the same sample using a one-pot format by mass spectrometry (MS). N-glycans were first released by PNGase F, followed by O-glycopeptide generation by proteinase K, selective N-glycan reduction, and O-glycan release by ß-elimination during permethylation of both N- and O-glycans. Glycan structural assignments and determination of N- to O-glycan ratio was obtained from the one-pot mass spectra. The streamlined, one-pot method is a reliable approach that will facilitate advanced characterizations for quality assessments of therapeutic glycoproteins.
Assuntos
Glicoproteínas , Polissacarídeos , Polissacarídeos/análise , Polissacarídeos/química , Polissacarídeos/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicosilação , Humanos , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/química , Espectrometria de Massas/métodosRESUMO
RATIONALE: The hypothesis that dissociation energies can serve as a predictor of observability of b- and y-peaks is tested for seven hexapeptides. If the hypothesis holds true for large classes of peptides, one would be able to improve the scoring accuracy of peptide identification tools by excluding theoretical peaks that cannot be observed in practical product ion spectra due to various physical, chemical or thermodynamic considerations. METHODS: Product ion m/z spectra of hexapeptides AAAAAA, AAAFAA, AAAVAA, AAFAAA, AAVAAA, AAFFAA and AAVVAA have been acquired on a Finnigan LTQ XL mass spectrometer in the collision-induced dissociation (CID) activation mode on a grid of activation times 0.05 to 100 ms and normalized collision energy 10 to 35%. Dissociation energies were calculated for all fragmentation channels leading to b- and y-fragments at the TPSS/6-31G(d,p) level of the density functional theory. RESULTS: It was demonstrated that the m/z peaks observed in the product ion spectra correspond to the fragmentation channels with dissociation energies below a certain threshold value. However, there is no direct correlation between the most intense m/z peaks and the lowest dissociation energies. Using the dissociation energies, it was predicted that out of 63 theoretically possible peaks in the b- and y-series of the seven hexapeptides, 19 should not be observable in practical spectra. In the experiments, 24 peaks were not observed, including all 19 predicted. CONCLUSIONS: Dissociation energies alone are not sufficient for predicting ion intensity relationships in product ion m/z spectra. Nevertheless, the present data suggest that dissociation energies appear to be good predictors of observability of b- and y-peaks and potentially very useful for filtering theoretical peaks of each candidate peptide in peptide identification tools. Published 2012. This article is a US Government work and is in the public domain in the USA.
Assuntos
Espectrometria de Massas/métodos , Oligopeptídeos/química , Íons/química , TermodinâmicaRESUMO
Opioids are commonly prescribed for extended periods of time to patients with advanced clear cell renal cell carcinoma to assist with pain management. Because extended opioid exposure has been shown to affect the vasculature and to be immunosuppressive, we investigated how it may affect the metabolism and physiology of clear cell renal cell carcinoma. RNA sequencing of a limited number of archived patients' specimens with extended opioid exposure or non-opioid exposure was performed. Immune infiltration and changes in the microenvironment were evaluated using CIBERSORT. A significant decrease in M1 macrophages and T cells CD4 memory resting immune subsets was observed in opioid-exposed tumors, whereas the changes observed in other immune cells were not statistically significant. Further RNA sequencing data analysis showed that differential expression of KEGG signaling pathways was significant between non-opioid-exposed specimens and opioid-exposed specimens, with a shift from a gene signature consistent with aerobic glycolysis to a gene signature consistent with the TCA cycle, nicotinate metabolism, and the cAMP signaling pathway. Together, these data suggest that extended opioid exposure changes the cellular metabolism and immune homeostasis of ccRCC, which might impact the response to therapy of these patients, especially if the therapy is targeting the microenvironment or metabolism of ccRCC tumors.
RESUMO
The resolution of SARS-CoV-2 replication hinges on cell-mediated immunity, wherein CD8+ T cells play a vital role. Nonetheless, the characterization of the specificity and TCR composition of CD8+ T cells targeting non-spike protein of SARS-CoV-2 before and after infection remains incomplete. Here, we analyzed CD8+ T cells recognizing six epitopes from the SARS-CoV-2 nucleocapsid (N) protein and found that SARS-CoV-2 infection slightly increased the frequencies of N-recognizing CD8+ T cells but significantly enhanced activation-induced proliferation compared to that of the uninfected donors. The frequencies of N-specific CD8+ T cells and their proliferative response to stimulation did not decrease over one year. We identified the N222-230 peptide (LLLDRLNQL, referred to as LLL thereafter) as a dominant epitope that elicited the greatest proliferative response from both convalescent and uninfected donors. Single-cell sequencing of T cell receptors (TCR) from LLL-specific CD8+ T cells revealed highly restricted Vα gene usage (TRAV12-2) with limited CDR3α motifs, supported by structural characterization of the TCR-LLL-HLA-A2 complex. Lastly, transcriptome analysis of LLL-specific CD8+ T cells from donors who had expansion (expanders) or no expansion (non-expanders) after in vitro stimulation identified increased chromatin modification and innate immune functions of CD8+ T cells in non-expanders. These results suggests that SARS-CoV-2 infection induces LLL-specific CD8+ T cell responses with a restricted TCR repertoire.
Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Humanos , SARS-CoV-2/metabolismo , Epitopos de Linfócito T , Receptores de Antígenos de Linfócitos T/metabolismo , Nucleocapsídeo/metabolismo , Glicoproteína da Espícula de CoronavírusRESUMO
RATIONALE: Peptide identification reliability can be improved by excluding from analysis those m/z peaks of candidate peptides which cannot be observed in practice due to various physical, chemical or thermodynamic considerations. We propose using dissociation energies (as opposed to proton affinities) as a predictor of observability of different m/z peaks in spectra of short peptides. METHODS: Mass spectra of the tetrapeptides AAAA, AAFA, AAVA, AFAA, AVAA, AFFA, and AVVA were measured in the collision-induced dissociation (CID) activation mode on a grid of activation times 0.05 to 100 ms and normalized collision energy 10 to 35%. The lowest energy geometries and vibrational spectra were calculated for the precursor ions and their charged and neutral fragments using density functional theory (DFT) at the TPSS/6-31G(d,p) level. Dissociation energies were calculated for all fragmentation channels leading to b- or y-fragments. RESULTS: It is demonstrated that m/z peaks observed in the mass spectra correspond to the fragmentation channels with the lowest dissociation energies. Using 50 kcal/mol as the cut-off value of dissociation energy, it was predicted that 28 out of 42 possible peaks in the b- and y-series of the seven tetrapeptides can be observed in mass spectra. In the experiments, 26 b- or y-peaks were observed, all of which are among the 28 predicted ones. CONCLUSIONS: The use of dissociation energies generalizes the use of proton affinities for semi-quantitative predictions of relative intensities of different m/z peaks of short peptides. Further advances in this direction will pave the way for reliable quantitative predictions and, hence, for a significant improvement in robustness and accuracy of peptide and protein identification tools.
Assuntos
Espectrometria de Massas/métodos , Mapeamento de Peptídeos/métodos , Peptídeos/química , CinéticaRESUMO
Sigma-1 receptors (Sig-1Rs) are endoplasmic reticulum (ER)-resident proteins known to be involved in learning and memory. Dendritic spines in hippocampal neurons play important roles in neuroplasticity and learning and memory. This study tested the hypothesis that Sig-1Rs might regulate denritic spine formation in hippocampal neurons and examined potential mechanisms therein. In rat hippocampal primary neurons, the knockdown of Sig-1Rs by siRNAs causes a deficit in the formation of dendritic spines that is unrelated to ER Ca(2+) signaling or apoptosis, but correlates with the mitochondrial permeability transition and cytochrome c release, followed by caspase-3 activation, Tiam1 cleavage, and a reduction in Rac1.GTP. Sig-1R-knockdown neurons contain higher levels of free radicals when compared to control neurons. The activation of superoxide dismutase or the application of the hydroxyl-free radical scavenger N-acetyl cysteine (NAC) to the Sig-1R-knockdown neurons rescues dendritic spines and mitochondria from the deficits caused by Sig-1R siRNA. Further, the caspase-3-resistant TIAM1 construct C1199DN, a stable guanine exchange factor able to constitutively activate Rac1 in the form of Rac1.GTP, also reverses the siRNA-induced dendritic spine deficits. In addition, constitutively active Rac1.GTP reverses this deficit. These results implicate Sig-1Rs as endogenous regulators of hippopcampal dendritic spine formation and suggest a free radical-sensitive ER-mitochondrion-Rac1.GTP pathway in the regulation of dendritic spine formation in the hippocampus.
Assuntos
Espinhas Dendríticas/fisiologia , Guanosina Trifosfato/metabolismo , Hipocampo/fisiologia , Receptores sigma/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Apoptose , Sinalização do Cálcio , Caspase 3/metabolismo , Células Cultivadas , Espinhas Dendríticas/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Sequestradores de Radicais Livres/farmacologia , Radicais Livres/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Aprendizagem/fisiologia , Memória/fisiologia , Mitocôndrias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Plasticidade Neuronal/fisiologia , RNA Interferente Pequeno/genética , Ratos , Receptores sigma/antagonistas & inibidores , Receptores sigma/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estresse Fisiológico , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , TransfecçãoRESUMO
Autophagy drives drug resistance and drug-induced cancer cell cytotoxicity. Targeting the autophagy process could greatly improve chemotherapy outcomes. The discovery of specific inhibitors or activators has been hindered by challenges with reliably measuring autophagy levels in a clinical setting. We investigated drug-induced autophagy in breast cancer cell lines with differing ER/PR/Her2 receptor status by exposing them to known but divergent autophagy inducers each with a unique molecular target, tamoxifen, trastuzumab, bortezomib or rapamycin. Differential gene expression analysis from total RNA extracted during the earliest sign of autophagy flux showed both cell- and drug-specific changes. We analyzed the list of differentially expressed genes to find a common, cell- and drug-agnostic autophagy signature. Twelve mRNAs were significantly modulated by all the drugs and 11 were orthogonally verified with Q-RT-PCR (Klhl24, Hbp1, Crebrf, Ypel2, Fbxo32, Gdf15, Cdc25a, Ddit4, Psat1, Cd22, Ypel3). The drug agnostic mRNA signature was similarly induced by a mitochondrially targeted agent, MitoQ. In-silico analysis on the KM-plotter cancer database showed that the levels of these mRNAs are detectable in human samples and associated with breast cancer prognosis outcomes of Relapse-Free Survival in all patients (RSF), Overall Survival in all patients (OS), and Relapse-Free Survival in ER+ Patients (RSF ER+). High levels of Klhl24, Hbp1, Crebrf, Ypel2, CD22 and Ypel3 were correlated with better outcomes, whereas lower levels of Gdf15, Cdc25a, Ddit4 and Psat1 were associated with better prognosis in breast cancer patients. This gene signature uncovers candidate autophagy biomarkers that could be tested during preclinical and clinical studies to monitor the autophagy process.
Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Células MCF-7 , Compostos Organofosforados/farmacologia , Compostos Organofosforados/uso terapêutico , Receptor ErbB-2/genética , Receptores de Estrogênio/genética , Receptores de Progesterona/genética , Análise de Sequência de RNA , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Ubiquinona/uso terapêuticoRESUMO
The immune checkpoint programmed death-ligand 1 (PD-L1) is expressed on the cell surface of tumor cells and is key for maintaining an immunosuppressive microenvironment through its interaction with the programmed death 1 (PD-1). Clear cell renal cell carcinoma (ccRCC) is a highly immunogenic cancer characterized by an aberrant aerobic glycolytic metabolism and is known to overexpress PD-L1. Multiple immunotherapies have been approved for the treatment of ccRCC, including cytokines and immune checkpoint inhibitors. Recently the intrinsic role of PD-L1 and interferon gamma (IFNγ) signaling have been studied in several types of tumor cells, yet it remains unclear how they affect the metabolism and signaling pathways of ccRCC. Using metabolomics, metabolic assays and RNAseq, we showed that IFNγ enhanced aerobic glycolysis and tryptophan metabolism in ccRCC cells in vitro and induced the transcriptional expression of signaling pathways related to inflammation, cell proliferation and cellular energetics. These metabolic and transcriptional effects were partially reversed following transient PD-L1 silencing. Aerobic glycolysis, as well as signaling pathways related to inflammation, were not induced by IFNγ when PD-L1 was silenced, however, tryptophan metabolism and activation of Jak2 and STAT1 were maintained. Our data demonstrate that PD-L1 expression is required to mediate some of IFNγ's effect in ccRCC cells and highlight the importance of PD-L1 signaling in regulating the metabolism of ccRCC cells in response to inflammatory signals.
RESUMO
Despite the high safety profile demonstrated in clinical trials, the immunogenicity of adeno-associated virus (AAV)-mediated gene therapy remains a major hurdle. Specifically, T-cell-mediated immune responses to AAV vectors are related to loss of efficacy and potential liver toxicities. As post-translational modifications in T cell epitopes have the potential to affect immune reactions, the cellular immune responses to peptides derived from spontaneously deamidated AAV were investigated. Here, we report that highly deamidated sites in AAV9 contain CD4 T cell epitopes with a Th1 cytokine pattern in multiple human donors with diverse human leukocyte antigen (HLA) backgrounds. Furthermore, some peripheral blood mononuclear cell (PBMC) samples demonstrated differential T cell activation to deamidated or non-deamidated epitopes. Also, in vitro and in silico HLA binding assays showed differential binding to the deamidated or non-deamidated peptides in some HLA alleles. This study provides critical attributes to vector-immune-mediated responses, as AAV deamidation can impact the immunogenicity, safety, and efficacy of AAV-mediated gene therapy in some patients.
RESUMO
A diverse T cell receptor (TCR) repertoire is essential for protection against a variety of pathogens, and TCR repertoire size is believed to decline with age. However, the precise size of human TCR repertoires, in both total and subsets of T cells, as well as their changes with age, are not fully characterized. We conducted a longitudinal analysis of the human blood TCRα and TCRß repertoire of CD4+ and CD8+ T cell subsets using a unique molecular identifier-based (UMI-based) RNA-seq method. Thorough analysis of 1.9 × 108 T cells yielded the lower estimate of TCR repertoire richness in an adult at 3.8 × 108. Alterations of the TCR repertoire with age were observed in all 4 subsets of T cells. The greatest reduction was observed in naive CD8+ T cells, while the greatest clonal expansion was in memory CD8+ T cells, and the highest increased retention of TCR sequences was in memory CD8+ T cells. Our results demonstrated that age-related TCR repertoire attrition is subset specific and more profound for CD8+ than CD4+ T cells, suggesting that aging has a more profound effect on cytotoxic as opposed to helper T cell functions. This may explain the increased susceptibility of older adults to novel infections.