Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Development ; 150(7)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36971700

RESUMO

Plants respond to environmental stresses through controlled stem cell maintenance and meristem activity. One level of gene regulation is RNA alternative splicing. However, the mechanistic link between stress, meristem function and RNA splicing is poorly understood. The MERISTEM-DEFECTIVE (MDF) Arabidopsis gene encodes an SR-related family protein, required for meristem function and leaf vascularization, and is the likely orthologue of the human SART1 and yeast Snu66 splicing factors. MDF is required for the correct splicing and expression of key transcripts associated with root meristem function. We identified RSZ33 and ACC1, both known to regulate cell patterning, as splicing targets required for MDF function in the meristem. MDF expression is modulated by osmotic and cold stress, associated with differential splicing and specific isoform accumulation and shuttling between nucleus and cytosol, and acts in part via a splicing target SR34. We propose a model in which MDF controls splicing in the root meristem to promote stemness and to repress stress response, cell differentiation and cell death pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Meristema/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Splicing de RNA/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
2.
J Virol ; 95(20): e0110821, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34346761

RESUMO

Parvoviruses package a linear single-stranded DNA genome with hairpin structures at both ends. It has been thought that terminal hairpin sequences are indispensable for viral DNA replication. Here, we provide evidence that the hairpin-deleted duplex genomes of human bocavirus 1 (HBoV1) replicate in human embryonic kidney 293 (HEK293) cells. We propose an alternative model for HBoV1 DNA replication in which the leading strand can initiate strand displacement without hairpin transfer. The transfection of the HBoV1 duplex genomes that retain a minimal replication origin at the right end (OriR) but with extensive deletions in the right-end hairpin (REH) generated viruses in HEK293 cells at a level 10 to 20 times lower than that of the wild-type (WT) duplex genome. Importantly, these viruses that have a genome with various deletions after the OriR but not the one retaining only the OriR replicated in polarized human airway epithelia. We discovered that the 18-nucleotide (nt) sequence (nt 5403 to 5420) beyond the OriR was sufficient to confer virus replication in polarized human airway epithelia, although its progeny virus production was ∼5 times lower than that of the WT virus. Thus, our study demonstrates that hairpin transfer-independent productive parvovirus DNA replication can occur. IMPORTANCE Hairpin transfer-independent parvovirus replication was modeled with human bocavirus 1 (HBoV1) duplex genomes whose 5' hairpin structure was ablated by various deletions. In HEK293 cells, these duplex viral genomes with ablated 5' hairpin sequence replicated efficiently and generated viruses that productively infected polarized human airway epithelium. Thus, for the first time, we reveal a previously unknown phenomenon that productive parvovirus DNA replication does not depend on the hairpin sequence at REH to initiate rolling-hairpin DNA replication. Notably, the intermediates of viral DNA replication, as revealed by two-dimensional electrophoresis, from transfections of hairpin sequence-deleted duplex genome and full-length genome in HEK293 cells as well as from virus infection of polarized human airway epithelia are similar. Thus, the establishment of the hairpin transfer-independent parvoviral DNA replication deepens our understanding of viral DNA replication and may have implications in the development of parvovirus-based viral vectors with alternative properties.


Assuntos
Replicação do DNA/genética , Bocavirus Humano/genética , Sequências Repetidas Invertidas/genética , DNA Viral/genética , Células Epiteliais/virologia , Genoma Viral/genética , Células HEK293 , Humanos , Parvovirus/genética , Origem de Replicação , Mucosa Respiratória/virologia , Proteínas não Estruturais Virais/genética , Viroses/genética , Replicação Viral/genética
3.
J Virol ; 93(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30282717

RESUMO

Lytic infection of human parvovirus B19 (B19V) takes place exclusively in human erythroid progenitor cells of bone marrow and fetal liver, which disrupts erythropoiesis. During infection, B19V expresses three nonstructural proteins (NS1, 11-kDa, and 7.5-kDa) and two structural proteins (VP1 and VP2). While NS1 is essential for B19V DNA replication, 11-kDa enhances viral DNA replication significantly. In this study, we confirmed the enhancement role of 11-kDa in viral DNA replication and elucidated the underlying mechanism. We found that 11-kDa specially interacts with cellular growth factor receptor-bound protein 2 (Grb2) during virus infection and in vitro We determined a high affinity interaction between 11-kDa and Grb2 that has an equilibrium dissociation constant (KD ) value of 18.13 nM. In vitro, one proline-rich motif was sufficient for 11-kDa to sustain a strong interaction with Grb2. In consistence, in vivo during infection, one proline-rich motif was enough for 11-kDa to significantly reduce phosphorylation of extracellular signal-regulated kinase (ERK). Mutations of all three proline-rich motifs of 11-kDa abolished its capability to reduce ERK activity and, accordingly, decreased viral DNA replication. Transduction of a lentiviral vector encoding a short hairpin RNA (shRNA) targeting Grb2 decreased the expression of Grb2 as well as the level of ERK phosphorylation, which resulted in an increase of B19V replication. These results, in concert, indicate that the B19V 11-kDa protein interacts with cellular Grb2 to downregulate ERK activity, which upregulates viral DNA replication.IMPORTANCE Human parvovirus B19 (B19V) infection causes hematological disorders and is the leading cause of nonimmunological fetal hydrops during pregnancy. During infection, B19V expresses two structural proteins, VP1 and VP2, and three nonstructural proteins, NS1, 11-kDa, and 7.5-kDa. While NS1 is essential, 11-kDa plays an enhancing role in viral DNA replication. Here, we elucidated a mechanism underlying 11-kDa protein-regulated B19V DNA replication. 11-kDa is tightly associated with cellular growth factor receptor-bound protein 2 (Grb2) during infection. In vitro, 11-kDa interacts with Grb2 with high affinity through three proline-rich motifs, of which at least one is indispensable for the regulation of viral DNA replication. 11-kDa and Grb2 interaction disrupts extracellular signal-regulated kinase (ERK) signaling, which mediates upregulation of B19V replication. Thus, our study reveals a novel mechanism of how a parvoviral small nonstructural protein regulates viral DNA replication by interacting with a host protein that is predominately expressed in the cytoplasm.


Assuntos
Proteína Adaptadora GRB2/metabolismo , Infecções por Parvoviridae/metabolismo , Parvovirus B19 Humano/fisiologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Replicação do DNA , Humanos , Peso Molecular , Mutação , Parvovirus B19 Humano/metabolismo , Fosforilação , Prolina/metabolismo , Ligação Proteica , Replicação Viral
4.
J Virol ; 91(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28122984

RESUMO

Human bocavirus 1 (HBoV1) belongs to the species Primate bocaparvovirus of the genus Bocaparvovirus of the Parvoviridae family. HBoV1 causes acute respiratory tract infections in young children and has a selective tropism for the apical surface of well-differentiated human airway epithelia (HAE). In this study, we identified an additional HBoV1 gene, bocavirus-transcribed small noncoding RNA (BocaSR), within the 3' noncoding region (nucleotides [nt] 5199 to 5338) of the viral genome of positive sense. BocaSR is transcribed by RNA polymerase III (Pol III) from an intragenic promoter at levels similar to that of the capsid protein-coding mRNA and is essential for replication of the viral DNA in both transfected HEK293 and infected HAE cells. Mechanistically, we showed that BocaSR regulates the expression of HBoV1-encoded nonstructural proteins NS1, NS2, NS3, and NP1 but not NS4. BocaSR is similar to the adenovirus-associated type I (VAI) RNA in terms of both nucleotide sequence and secondary structure but differs from it in that its regulation of viral protein expression is independent of RNA-activated protein kinase (PKR) regulation. Notably, BocaSR accumulates in the viral DNA replication centers within the nucleus and likely plays a direct role in replication of the viral DNA. Our findings reveal BocaSR to be a novel viral noncoding RNA that coordinates the expression of viral proteins and regulates replication of viral DNA within the nucleus. Thus, BocaSR may be a target for antiviral therapies for HBoV and may also have utility in the production of recombinant HBoV vectors.IMPORTANCE Human bocavirus 1 (HBoV1) is pathogenic to humans, causing acute respiratory tract infections in young children. In this study, we identified a novel HBoV1 gene that lies in the 3' noncoding region of the viral positive-sense genome and is transcribed by RNA polymerase III into a noncoding RNA of 140 nt. This bocavirus-transcribed small RNA (BocaSR) diverges from both adenovirus-associated (VA) RNAs and Epstein-Barr virus-encoded small RNAs (EBERs) with respect to RNA sequence, representing a third species of this kind of Pol III-dependent viral noncoding RNA and the first noncoding RNA identified in autonomous parvoviruses. Unlike the VA RNAs, BocaSR localizes to the viral DNA replication centers of the nucleus and is essential for expression of viral nonstructural proteins independent of RNA-activated protein kinase R and replication of HBoV1 genomes. The identification of BocaSR and its role in virus DNA replication reveals potential avenues for developing antiviral therapies.


Assuntos
Regulação Viral da Expressão Gênica , Bocavirus Humano/fisiologia , Pequeno RNA não Traduzido/metabolismo , Replicação Viral , Células Cultivadas , Replicação do DNA , Humanos
5.
J Virol ; 91(1)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27733644

RESUMO

Human bocavirus 1 (HBoV1), an emerging human-pathogenic respiratory virus, is a member of the genus Bocaparvovirus of the Parvoviridae family. In human airway epithelium air-liquid interface (HAE-ALI) cultures, HBoV1 infection initiates a DNA damage response (DDR), activating all three phosphatidylinositol 3-kinase-related kinases (PI3KKs): ATM, ATR, and DNA-PKcs. In this context, activation of PI3KKs is a requirement for amplification of the HBoV1 genome (X. Deng, Z. Yan, F. Cheng, J. F. Engelhardt, and J. Qiu, PLoS Pathog, 12:e1005399, 2016, https://doi.org/10.1371/journal.ppat.1005399), and HBoV1 replicates only in terminally differentiated, nondividing cells. This report builds on the previous discovery that the replication of HBoV1 DNA can also occur in dividing HEK293 cells, demonstrating that such replication is likewise dependent on a DDR. Transfection of HEK293 cells with the duplex DNA genome of HBoV1 induces hallmarks of DDR, including phosphorylation of H2AX and RPA32, as well as activation of all three PI3KKs. The large viral nonstructural protein NS1 is sufficient to induce the DDR and the activation of the three PI3KKs. Pharmacological inhibition or knockdown of any one of the PI3KKs significantly decreases both the replication of HBoV1 DNA and the downstream production of progeny virions. The DDR induced by the HBoV1 NS1 protein does not cause obvious damage to cellular DNA or arrest of the cell cycle. Notably, key DNA replication factors and major DNA repair DNA polymerases (polymerase η [Pol η] and polymerase κ [Pol κ]) are recruited to the viral DNA replication centers and facilitate HBoV1 DNA replication. Our study provides the first evidence of the DDR-dependent parvovirus DNA replication that occurs in dividing cells and is independent of cell cycle arrest. IMPORTANCE: The parvovirus human bocavirus 1 (HBoV1) is an emerging respiratory virus that causes lower respiratory tract infections in young children worldwide. HEK293 cells are the only dividing cells tested that fully support the replication of the duplex genome of this virus and allow the production of progeny virions. In this study, we demonstrate that HBoV1 induces a DDR that plays significant roles in the replication of the viral DNA and the production of progeny virions in HEK293 cells. We also show that both cellular DNA replication factors and DNA repair DNA polymerases colocalize within centers of viral DNA replication and that Pol η and Pol κ play an important role in HBoV1 DNA replication. Whereas the DDR that leads to the replication of the DNA of other parvoviruses is facilitated by the cell cycle, the DDR triggered by HBoV1 DNA replication or NS1 is not. HBoV1 is the first parvovirus whose NS1 has been shown to be able to activate all three PI3KKs (ATM, ATR, and DNA-PKcs).


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Replicação do DNA , DNA Viral/genética , Proteína Quinase Ativada por DNA/genética , Bocavirus Humano/genética , Proteínas Nucleares/genética , Infecções por Parvoviridae/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Divisão Celular , Dano ao DNA , DNA Viral/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Repetição Terminal Longa de HIV , Histonas/genética , Histonas/metabolismo , Interações Hospedeiro-Patógeno , Bocavirus Humano/crescimento & desenvolvimento , Bocavirus Humano/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Infecções por Parvoviridae/metabolismo , Infecções por Parvoviridae/virologia , Fosforilação , Regiões Promotoras Genéticas , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Transdução de Sinais , Transcrição Gênica , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
6.
J Virol ; 90(9): 4658-4669, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26912614

RESUMO

UNLABELLED: A novel chimeric parvoviral vector, rAAV2/HBoV1, in which the recombinant adeno-associated virus 2 (rAAV2) genome is pseudopackaged by the human bocavirus 1 (HBoV1) capsid, has been shown to be highly efficient in gene delivery to human airway epithelia (Z. Yan et al., Mol Ther 21:2181-2194, 2013,http://dx.doi.org/10.1038/mt.2013.92). In this vector production system, we used an HBoV1 packaging plasmid, pHBoV1NSCap, that harbors HBoV1 nonstructural protein (NS) and capsid protein (Cap) genes. In order to simplify this packaging plasmid, we investigated the involvement of the HBoV1 NS proteins in capsid protein expression. We found that NP1, a small NS protein encoded by the middle open reading frame, is required for the expression of the viral capsid proteins (VP1, VP2, and VP3). We also found that the other NS proteins (NS1, NS2, NS3, and NS4) are not required for the expression of VP proteins. We performed systematic analyses of the HBoV1 mRNAs transcribed from the pHBoV1NSCap packaging plasmid and its derivatives in HEK 293 cells. Mechanistically, we found that NP1 is required for both the splicing and the read-through of the proximal polyadenylation site of the HBoV1 precursor mRNA, essential functions for the maturation of capsid protein-encoding mRNA. Thus, our study provides a unique example of how a small viral nonstructural protein facilitates the multifaceted regulation of capsid gene expression. IMPORTANCE: A novel chimeric parvoviral vector, rAAV2/HBoV1, expressing a full-length cystic fibrosis transmembrane conductance regulator (CFTR) gene, is capable of correcting CFTR-dependent chloride transport in cystic fibrosis human airway epithelium. Previously, an HBoV1 nonstructural and capsid protein-expressing plasmid, pHBoV1NSCap, was used to package the rAAV2/HBoV1 vector, but yields remained low. In this study, we demonstrated that the nonstructural protein NP1 is required for the expression of capsid proteins. However, we found that the other four nonstructural proteins (NS1 to -4) are not required for expression of capsid proteins. By mutating theciselements that function as internal polyadenylation signals in the capsid protein-expressing mRNA, we constructed a simple HBoV1 capsid protein-expressing gene that expresses capsid proteins as efficiently as pHBoV1NSCap does, and at similar ratios, but independently of NP1. Our study provides a foundation to develop a better packaging system for rAAV2/HBoV1 vector production.


Assuntos
Proteínas do Capsídeo/genética , Regulação Viral da Expressão Gênica , Bocavirus Humano/genética , Bocavirus Humano/metabolismo , Proteínas não Estruturais Virais/metabolismo , Processamento Alternativo , Sequência de Bases , Linhagem Celular , Códon de Iniciação , DNA Complementar , Técnicas de Inativação de Genes , Genoma Viral , Humanos , Dados de Sequência Molecular , Mutação , Poli A/genética , Sítios de Splice de RNA , RNA Mensageiro/genética , RNA Viral , Transcrição Gênica , Ativação Transcricional
7.
J Virol ; 90(17): 7761-77, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27334591

RESUMO

UNLABELLED: Parvoviruses are single-stranded DNA viruses that use the palindromic structures at the ends of the viral genome for their replication. The mechanism of parvovirus replication has been studied mostly in the dependoparvovirus adeno-associated virus 2 (AAV2) and the protoparvovirus minute virus of mice (MVM). Here, we used human bocavirus 1 (HBoV1) to understand the replication mechanism of bocaparvovirus. HBoV1 is pathogenic to humans, causing acute respiratory tract infections, especially in young children under 2 years old. By using the duplex replicative form of the HBoV1 genome in human embryonic kidney 293 (HEK293) cells, we identified the HBoV1 minimal replication origin at the right-end hairpin (OriR). Mutagenesis analyses confirmed the putative NS1 binding and nicking sites within the OriR. Of note, unlike the large nonstructural protein (Rep78/68 or NS1) of other parvoviruses, HBoV1 NS1 did not specifically bind OriR in vitro, indicating that other viral and cellular components or the oligomerization of NS1 is required for NS1 binding to the OriR. In vivo studies demonstrated that residues responsible for NS1 binding and nicking are within the origin-binding domain. Further analysis identified that the small nonstructural protein NP1 is required for HBoV1 DNA replication at OriR. NP1 and other viral nonstructural proteins (NS1 to NS4) colocalized within the viral DNA replication centers in both OriR-transfected cells and virus-infected cells, highlighting a direct involvement of NP1 in viral DNA replication at OriR. Overall, our study revealed the characteristics of HBoV1 DNA replication at OriR, suggesting novel characteristics of autonomous parvovirus DNA replication. IMPORTANCE: Human bocavirus 1 (HBoV1) causes acute respiratory tract infections in young children. The duplex HBoV1 genome replicates in HEK293 cells and produces progeny virions that are infectious in well-differentiated airway epithelial cells. A recombinant AAV2 vector pseudotyped with an HBoV1 capsid has been developed to efficiently deliver the cystic fibrosis transmembrane conductance regulator gene to human airway epithelia. Here, we identified both cis-acting elements and trans-acting proteins that are required for HBoV1 DNA replication at the right-end hairpin in HEK293 cells. We localized the minimal replication origin, which contains both NS1 nicking and binding sites, to a 46-nucleotide sequence in the right-end hairpin. The identification of these essential elements of HBoV1 DNA replication acting both in cis and in trans will provide guidance to develop antiviral strategies targeting viral DNA replication at the right-end hairpin and to design next-generation recombinant HBoV1 vectors, a promising tool for gene therapy of lung diseases.


Assuntos
Replicação do DNA , DNA Viral/genética , DNA Viral/metabolismo , Bocavirus Humano/fisiologia , Replicação Viral , Linhagem Celular , Análise Mutacional de DNA , Bocavirus Humano/genética , Humanos , Ligação Proteica , Origem de Replicação , Proteínas não Estruturais Virais/metabolismo
8.
J Virol ; 89(19): 10097-109, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26223640

RESUMO

UNLABELLED: Human bocavirus 1 (HBoV1) is a single-stranded DNA parvovirus that causes lower respiratory tract infections in young children worldwide. In this study, we identified novel splice acceptor and donor sites, namely, A1' and D1', in the large nonstructural protein (NS1)-encoding region of the HBoV1 precursor mRNA. The novel small NS proteins (NS2, NS3, and NS4) were confirmed to be expressed following transfection of an HBoV1 infectious proviral plasmid and viral infection of polarized human airway epithelium cultured at an air-liquid interface (HAE-ALI). We constructed mutant pIHBoV1 infectious plasmids which harbor silent mutations (sm) smA1' and smD1' at the A1' and D1' splice sites, respectively. The mutant infectious plasmids maintained production of HBoV1 progeny virions at levels less than five times lower than that of the wild-type plasmid. Importantly, the smA1' mutant virus that does not express NS3 and NS4 replicated in HAE-ALI as effectively as the wild-type virus; however, the smD1' mutant virus that does not express NS2 and NS4 underwent an abortive infection in HAE-ALI. Thus, our study identified three novel NS proteins, NS2, NS3, and NS4, and suggests an important function of the NS2 protein in HBoV1 replication in HAE-ALI. IMPORTANCE: Human bocavirus 1 infection causes respiratory diseases, including acute wheezing in infants, of which life-threatening cases have been reported. In vitro, human bocavirus 1 infects polarized human bronchial airway epithelium cultured at an air-liquid interface that mimics the environment of human lower respiratory airways. Viral nonstructural proteins are often important for virus replication and pathogenesis in infected tissues or cells. In this report, we identified three new nonstructural proteins of human bocavirus 1 that are expressed during infection of polarized human bronchial airway epithelium. Among them, we proved that one nonstructural protein is critical to the replication of the virus in polarized human bronchial airway epithelium. The creation of nonreplicating infectious HBoV1 mutants may have particular utility in vaccine development for this virus.


Assuntos
Bocavirus Humano/fisiologia , Proteínas não Estruturais Virais/fisiologia , Códon de Terminação , Genoma Viral , Células HEK293 , Bocavirus Humano/genética , Bocavirus Humano/patogenicidade , Humanos , Íntrons , Mutação , Infecções por Parvoviridae/virologia , Processamento Pós-Transcricional do RNA , Sítios de Splice de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Mucosa Respiratória/virologia , Técnicas de Cultura de Tecidos , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Replicação Viral/genética , Replicação Viral/fisiologia
9.
J Virol ; 87(21): 11487-93, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23966383

RESUMO

Human bocavirus is a newly identified, globally prevalent, parvovirus that is associated with respiratory infection in infants and young children. Parvoviruses encode a large nonstructural protein 1 (NS1) that is essential for replication of the viral single-stranded DNA genome and DNA packaging and may play versatile roles in virus-host interactions. Here, we report the structure of the human bocavirus NS1 N-terminal domain, the first for any autonomous parvovirus. The structure shows an overall fold that is canonical to the histidine-hydrophobic-histidine superfamily of nucleases, which integrates two distinct DNA-binding sites: (i) a positively charged region mediated by a surface hairpin (residues 190 to 198) that is responsible for recognition of the viral origin of replication of the double-stranded DNA nature and (ii) the nickase active site that binds to the single-stranded DNA substrate for site-specific cleavage. The structure reveals an acidic-residue-rich subdomain that is present in bocavirus NS1 proteins but not in the NS1 orthologs in erythrovirus or dependovirus, which may mediate bocavirus-specific interaction with DNA or potential host factors. These results provide insights into recognition of the origin of replication and nicking of DNA during bocavirus genome replication. Mapping of variable amino acid residues of NS1s from four human bocavirus species onto the structure shows a scattered pattern, but the origin recognition site and the nuclease active site are invariable, suggesting potential targets for antivirals against this clade of highly diverse human viruses.


Assuntos
Desoxirribonuclease I/química , Bocavirus Humano/química , Proteínas não Estruturais Virais/química , Sítios de Ligação , Cristalografia por Raios X , Desoxirribonuclease I/genética , Bocavirus Humano/genética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Conformação Proteica , Proteínas não Estruturais Virais/genética
10.
PLoS Pathog ; 8(8): e1002899, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22956907

RESUMO

Human bocavirus 1 (HBoV1) has been identified as one of the etiological agents of wheezing in young children with acute respiratory-tract infections. In this study, we have obtained the sequence of a full-length HBoV1 genome (including both termini) using viral DNA extracted from a nasopharyngeal aspirate of an infected patient, cloned the full-length HBoV1 genome, and demonstrated DNA replication, encapsidation of the ssDNA genome, and release of the HBoV1 virions from human embryonic kidney 293 cells. The HBoV1 virions generated from this cell line-based production system exhibits a typical icosahedral structure of approximately 26 nm in diameter, and is capable of productively infecting polarized primary human airway epithelia (HAE) from the apical surface. Infected HAE showed hallmarks of lung airway-tract injury, including disruption of the tight junction barrier, loss of cilia and epithelial cell hypertrophy. Notably, polarized HAE cultured from an immortalized airway epithelial cell line, CuFi-8 (originally derived from a cystic fibrosis patient), also supported productive infection of HBoV1. Thus, we have established a reverse genetics system and generated the first cell line-based culture system for the study of HBoV1 infection, which will significantly advance the study of HBoV1 replication and pathogenesis.


Assuntos
Células Epiteliais/virologia , Bocavirus Humano/fisiologia , Infecções por Parvoviridae/virologia , Infecções Respiratórias/virologia , Replicação Viral , Sequência de Bases , Linhagem Celular , DNA Viral/química , DNA Viral/genética , Epitélio/virologia , Feminino , Genoma Viral/genética , Bocavirus Humano/genética , Bocavirus Humano/isolamento & purificação , Humanos , Sequências Repetidas Invertidas , Dados de Sequência Molecular , Sistema Respiratório/virologia , Genética Reversa , Análise de Sequência de DNA , Transfecção
11.
Glia ; 61(5): 732-49, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23440860

RESUMO

Differentiation of oligodendrocyte precursor cells (OPCs) is the most important event for the myelination of central nervous system (CNS) axons during development and remyelination in demyelinating diseases, while the underlying molecular mechanisms remain largely unknown. Here we show that NMDA receptor (NMDAR) is a functional regulator of OPCs differentiation and remyelination. First, GluN1, GluN2A, and GluN2B subunits are expressed in oligodendrocyte lineage cells (OLs) in vitro and in vivo by immunostaining and Western blot analysis. Second, in a purified rat OPC culture system, NMDARs specially mediate OPCs differentiation by enhancing myelin proteins expression and the processes branching at the immature to mature oligodendrocyte transition analyzed by a serial of developmental stage-specific antigens. Moreover, pharmacological NMDAR antagonists or specific knockdown of GluN1 by RNA interference in OPCs prevents the differentiation induced by NMDA. NMDA can activate the mammalian target of rapamycin (mTOR) signal in OPCs and the pro-differentiation effect of NMDA is obstructed by the mTOR inhibitor rapamycin, suggesting NMDAR exerts its effect through mTOR-dependent mechanism. Furthermore, NMDA increases numbers of myelin segments in DRG-OPC cocultures. Finally, NMDAR specific antagonist MK801 delays remyelination in the cuprizone model examined by LFB-PAS, immunofluorescence and electron microscopy. This effect appears to result from inhibiting OPCs differentiation as more NG2(+) OPCs but less GST-π(+) mature oligodendrocytes are observed. Together, these results indicate that NMDAR plays a critical role in the regulation of OPCs differentiation in vitro and remyelination in cuprizone model which may provide potential target for the treatment of demyelination disease.


Assuntos
Diferenciação Celular/fisiologia , Bainha de Mielina/fisiologia , Células-Tronco Neurais/citologia , Oligodendroglia/citologia , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Animais Recém-Nascidos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Maleato de Dizocilpina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
12.
Glia ; 61(12): 2078-99, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24123220

RESUMO

Oligodendrocyte precursor cells (OPCs) originate from restricted regions of the brain and migrate into the developing white matter, where they differentiate into oligodendrocytes and myelinate axons in the central nervous system (CNS). The molecular mechanisms that orchestrate these long distance trips of OPCs to populate throughout the CNS are poorly understood. Emerging evidence has argued the expression of N-methyl-d-aspartic acid (NMDA) receptors (NMDARs) in oligodendrocyte lineage cells in vivo, but their physiological function remains elusive. We have previously demonstrated the expression and function of NMDARs in OPC differentiation and myelination/remyelination. Here, we show that NMDARs stimulation promotes OPC migration both by chemotaxis and chemokinesis as demonstrated by various cell migration systems including Boyden transwell, single cell, matrix-gel cell mass, and SVZ tissue explants assays. The pro-migration effect of NMDAR can be abolished by either pharmacological inhibition or shRNA knock down of the T lymphoma invasion and metastasis 1 (Tiam1), a Rac1 guanine nucleotide exchange factor (Rac1-GEF) which is coexpressed and interacts with NMDAR in OPCs. Moreover, NMDAR stimulation evokes cascade activation of the Tiam1/Rac1/ERK signaling pathway which mediates its effect on OPC migration. We also show that glutamate released from cultured cortical neuron promotes OPCs migration via NMDAR, and that antagonism of NMDAR or inhibition of Tiam1 blocks the endogenous glutamate-induced OPCs migration from SVZ to cortical plate in the embryonic brain slice culture. Thus, our result suggests a critical role of NMDAR in regulation of OPCs migration during CNS development by coupling to and activating the Tiam1/Rac1 pathway.


Assuntos
Movimento Celular/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Neoplasias/metabolismo , Células-Tronco Neurais/citologia , Oligodendroglia/citologia , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/fisiologia , Movimento Celular/efeitos dos fármacos , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , N-Metilaspartato/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T
13.
J Virol ; 86(19): 10748-58, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22837195

RESUMO

Human parvovirus B19 (B19V) infection is highly restricted to human erythroid progenitor cells, in which it induces a DNA damage response (DDR). The DDR signaling is mainly mediated by the ATR (ataxia telangiectasia-mutated and Rad3-related) pathway, which promotes replication of the viral genome; however, the exact mechanisms employed by B19V to take advantage of the DDR for virus replication remain unclear. In this study, we focused on the initiators of the DDR and the role of the DDR in cell cycle arrest during B19V infection. We examined the role of individual viral proteins, which were delivered by lentiviruses, in triggering a DDR in ex vivo-expanded primary human erythroid progenitor cells and the role of DNA replication of the B19V double-stranded DNA (dsDNA) genome in a human megakaryoblastoid cell line, UT7/Epo-S1 (S1). All the cells were cultured under hypoxic conditions. The results showed that none of the viral proteins induced phosphorylation of H2AX or replication protein A32 (RPA32), both hallmarks of a DDR. However, replication of the B19V dsDNA genome was capable of inducing the DDR. Moreover, the DDR per se did not arrest the cell cycle at the G(2)/M phase in cells with replicating B19V dsDNA genomes. Instead, the B19V nonstructural 1 (NS1) protein was the key factor in disrupting the cell cycle via a putative transactivation domain operating through a p53-independent pathway. Taken together, the results suggest that the replication of the B19V genome is largely responsible for triggering a DDR, which does not perturb cell cycle progression at G(2)/M significantly, during B19V infection.


Assuntos
Dano ao DNA , Replicação do DNA , Parvovirus B19 Humano/genética , Parvovirus B19 Humano/metabolismo , Replicação Viral , Antígenos CD34/biossíntese , Pontos de Checagem do Ciclo Celular , Divisão Celular , Fase G2 , Genoma Viral , Histonas/metabolismo , Humanos , Hipóxia , Lentivirus/genética , Mutação , Fosforilação , Regiões Promotoras Genéticas
14.
ACS Appl Mater Interfaces ; 15(19): 23749-23757, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37143329

RESUMO

Motion tracking and recognition are gaining increasing attention in athletes' training for winter sports due to their importance in posture correction and injury prevention. Electronic skin serves as a better candidate compared to vision-based methods. However, the challenges of its application include sensing materials with good stretchability, softness, anti-freeze, non-volatility, and adhesion, and data processing techniques of high intelligence and efficiency. Here, we propose an antifreezing, adhesive, and ultra-stretchable organic ionogel (OIG). Maximum elongation of over 6500% has been obtained for the OIG of the double network, and the mechanical stretchability is retained at temperatures ranging from -50 to 50 °C. Importantly, the multi-sensor system could realize motion "recognition" rather than "perception" with the help of a convolutional neural network.


Assuntos
Esportes , Dispositivos Eletrônicos Vestíveis , Humanos , Adesivos , Movimento (Física) , Redes Neurais de Computação
15.
Glia ; 60(7): 1037-52, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22461009

RESUMO

Differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes is a prerequisite for remyelination after demyelination, and impairment of this process is suggested to be a major reason for remyelination failure. Diosgenin, a plant-derived steroid, has been implicated for therapeutic use in many diseases, but little is known about its effect on the central nervous system. In this study, using a purified rat OPC culture model, we show that diosgenin significantly and specifically promotes OPC differentiation without affecting the viability, proliferation, or migration of OPC. Interestingly, the effect of diosgenin can be blocked by estrogen receptor (ER) antagonist ICI 182780 but not by glucocorticoid and progesterone receptor antagonist RU38486, nor by mineralocorticoid receptor antagonist spirolactone. Moreover, it is revealed that both ER-alpha and ER-beta are expressed in OPC, and diosgenin can activate the extracellular signal-regulated kinase 1/2 (ERK1/2) in OPC via ER. The pro-differentiation effect of diosgenin can also be obstructed by the ERK inhibitor PD98059. Furthermore, in the cuprizone-induced demyelination model, it is demonstrated that diosgenin administration significantly accelerates/enhances remyelination as detected by Luxol fast blue stain, MBP immunohistochemistry and real time RT-PCR. Diosgenin also increases the number of mature oligodendrocytes in the corpus callosum while it does not affect the number of OPCs. Taking together, our results suggest that diosgenin promotes the differentiation of OPC into mature oligodendrocyte through an ER-mediated ERK1/2 activation pathway to accelerate remyelination, which implicates a novel therapeutic usage of this steroidal natural product in demyelinating diseases such as multiple sclerosis (MS).


Assuntos
Diferenciação Celular/efeitos dos fármacos , Diosgenina/farmacologia , Bainha de Mielina/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Bainha de Mielina/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Oligodendroglia/enzimologia , Oligodendroglia/metabolismo , Ratos , Transdução de Sinais/fisiologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/enzimologia , Células-Tronco/metabolismo
16.
Front Immunol ; 13: 1104646, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36741359

RESUMO

[This corrects the article DOI: 10.3389/fimmu.2022.1001263.].

17.
Front Immunol ; 13: 1001263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389770

RESUMO

Recombinant Adeno-associated virus (rAAV) is one of the main delivery vectors for gene therapy. To assess immunogenicity, toxicity, and features of AAV gene therapy in clinical settings, a meta-analysis of 255 clinical trials was performed. A total of 7,289 patients are planned to be dosed. AAV2 was the most dominantly used serotype (29.8%, n=72), and 8.3% (n=20) of trials used engineered capsids. 38.7% (n=91) of trials employed neutralizing antibody assays for patient enrollment, while 15.3% (n=36) used ELISA-based total antibody assays. However, there was high variability in the eligibility criteria with cut-off tiers ranging from 1:1 to 1:1,600. To address potential immunogenicity, 46.3% (n=118) of trials applied immunosuppressants (prophylactic or reactive), while 32.7% (n=18) of CNS and 37.5% (n=24) of ocular-directed trials employed immunosuppressants, possibly due to the immune-privileged status of CNS and retina. There were a total of 11 patient deaths across 8 trials, and 18 out of 30 clinical holds were due to toxicity findings in clinical studies. 30.6% (n=78) of trials had treatment-emergent serious adverse events (TESAEs), with hepatotoxicity and thrombotic microangiopathy (systemic delivery) and neurotoxicity (CNS delivery) being the most prominent. Additionally, the durability of gene therapy may be impacted by two distinct decline mechanisms: 1) rapid decline presumably due to immune responses; or 2) gradual decline due to vector dilution. The durability varied significantly depending on disease indication, dose, serotypes, and patient individuals. Most CNS (90.0%) and muscle trials (73.3%) achieved durable transgene expression, while only 43.6% of ocular trials had sustained clinical outcomes. The rAAV production system can affect rAAV quality and thus immunogenicity and toxicity. Out of 186 trials that have disclosed production system information, 63.0% (n=126) of trials used the transient transfection of the HEK293/HEK293T system, while 18.0% (n=36) applied the baculovirus/Sf9 (rBac/Sf9) system. There were no significant differences in TESAEs and durability between AAV generated by rBac/Sf9 and HEK293/HEK293T systems. In summary, rAAV immunogenicity and toxicity poses significant challenges for clinical development of rAAV gene therapies, and it warrants collaborative efforts to standardize monitoring/measurement methods, design novel strategies to overcome immune responses, and openly share relevant information.


Assuntos
Dependovirus , Vetores Genéticos , Humanos , Dependovirus/genética , Células HEK293 , Vetores Genéticos/efeitos adversos , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Imunossupressores/efeitos adversos
18.
Front Microbiol ; 12: 696604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220786

RESUMO

Human bocavirus 1 (HBoV1) was discovered in human nasopharyngeal specimens in 2005. It is an autonomous human parvovirus and causes acute respiratory tract infections in young children. HBoV1 infects well differentiated or polarized human airway epithelial cells in vitro. Unique among all parvoviruses, HBoV1 expresses 6 non-structural proteins, NS1, NS1-70, NS2, NS3, NS4, and NP1, and a viral non-coding RNA (BocaSR), and three structural proteins VP1, VP2, and VP3. The BocaSR is the first identified RNA polymerase III (Pol III) transcribed viral non-coding RNA in small DNA viruses. It plays an important role in regulation of viral gene expression and a direct role in viral DNA replication in the nucleus. HBoV1 genome replication in the polarized/non-dividing airway epithelial cells depends on the DNA damage and DNA repair pathways and involves error-free Y-family DNA repair DNA polymerase (Pol) η and Pol κ. Importantly, HBoV1 is a helper virus for the replication of dependoparvovirus, adeno-associated virus (AAV), in polarized human airway epithelial cells, and HBoV1 gene products support wild-type AAV replication and recombinant AAV (rAAV) production in human embryonic kidney (HEK) 293 cells. More importantly, the HBoV1 capsid is able to pseudopackage an rAAV2 or rHBoV1 genome, producing the rAAV2/HBoV1 or rHBoV1 vector. The HBoV1 capsid based rAAV vector has a high tropism for human airway epithelia. A deeper understanding in HBoV1 replication and gene expression will help find a better way to produce the rAAV vector and to increase the efficacy of gene delivery using the rAAV2/HBoV1 or rHBoV1 vector, in particular, to human airways. This review summarizes the recent advances in gene expression and replication of HBoV1, as well as the use of HBoV1 as a parvoviral vector for gene delivery.

19.
Environ Technol ; 41(16): 2130-2139, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30522413

RESUMO

Pyrene is one of the polycyclic aromatic hydrocarbons, which are a potential threat to ecosystems due to their mutagenicity, carcinogenicity, and teratogenicity. In this study, several bacteria were isolated from oil contaminated sludge and their capacity to biodegrade pyrene was investigated. Of these bacteria, the monoculture strain LZ6 showed the highest pyrene anaerobic biodegradation rate of 33% after 30 days when the initial concentration was 50 mg/L, and was identified as Klebsiella sp. LZ6 by morphological observation, the GENIII technology of Biolog, and 16S rDNA gene sequence analysis. The influence of various culture parameters on the biodegradation of pyrene were evaluated, and Klebsiella sp. LZ6 all showed the high degradation rate at an inoculum of 10-20% (v/v), pH 6.0-8.4, temperature 30-38°C, and initial pyrene concentration of 50-150 mg/L. The intermediate metabolites of the anaerobic biodegradation were analyzed by GC-MS. Several metabolites were identified, such as pyrene, 4,5-dihydro-, phenanthrene, dibenzo-p-dioxin, and 4-hydroxycinnamate acid. The anaerobic metabolic pathway for the degradation of pyrene was inferred by the products. It seems that pyrene was first reduced to pyrene,4,5-dihydro- by the adding of two hydrogen atoms, and then the carbon-carbon bond cleavage at saturated carbon atoms generated phenanthrene.


Assuntos
Klebsiella , Hidrocarbonetos Policíclicos Aromáticos , Anaerobiose , Biodegradação Ambiental , Ecossistema , Redes e Vias Metabólicas , Pirenos
20.
Hum Gene Ther ; 30(5): 556-570, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30398383

RESUMO

The genome of recombinant adeno-associated virus 2 (rAAV2) remains a promising candidate for gene therapy for cystic fibrosis (CF) lung disease, but due to limitations in the packaging capacity and the tropism of this virus with respect to the airways, strategies have evolved for packaging an rAAV2 genome (up to 5.8 kb) into the capsid of human bocavirus 1 (HBoV1) to produce a chimeric rAAV2/HBoV1 vector. Although a replication-incompetent HBoV1 genome has been established as a trans helper for capsid complementation, this system remains suboptimal with respect to virion yield. Here, a streamlined production system is described based on knowledge of the involvement of HBoV1 nonstructural (NS) proteins NS1, NS2, NS3, NS4, and NP1 in the process of virion production. The analyses reveal that NS1 and NS2 negatively impact virion production, NP1 is required to prevent premature termination of transcription of the cap mRNA from the native genome, and silent mutations within the polyadenylation sites of the cap coding sequence can eliminate this requirement for NP1. It is further shown that preventing the expression of all NS proteins significantly increases virion yield. Whereas the expression of capsid proteins VP1, VP2, and VP3 from a codon-optimized cap mRNA was highly efficient, optimal virion assembly, and thus potency, required enhanced VP1 expression, entailing a separate VP1 expression cassette. The final NS protein-free production system uses three-plasmid co-transfection of HEK293 cells, with one trans helper plasmid encoding VP1 and the AAV2 Rep proteins, and another encoding VP2-3 and components from adenovirus. This system yielded >16-fold more virions than the prototypic system, without reducing transduction potency. This increase in virion production is expected to facilitate greatly both research on the biology of rAAV2/HBoV1 and preclinical studies testing the effectiveness of this vector for gene therapy of CF lung disease in large animal models.


Assuntos
Vetores Genéticos/genética , Bocavirus Humano/genética , Parvovirinae/genética , Recombinação Genética , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Dependovirus , Células HEK293 , Humanos , Plasmídeos/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA