RESUMO
There is a long standing contradiction on the tensile response of zinc oxide nanowires between theoretical prediction and experimental observations. Although it is proposed that there is a ductile behavior dominated by phase transformation, only an elastic deformation and brittle fracture was witnessed in experiments. Using molecular dynamics simulations, we clarified that, as the lateral dimension of zinc oxide nanowires increases to a critical value, an unambiguous ductile-to-brittle transition occurs. The critical value increases with decreasing the strain rate. Factors including planar defects and surface contamination induce brittle fracture prior to the initiation of phase transformation. These findings are consistent with previous atomistic standpoints and experimental results.
RESUMO
With extensive first-principles density-functional calculations, we construct a three-dimensional compositional phase diagram of Ba1-xCaxZryTi1-yO3 (BCZT) with the Ca and Zr content in the ranges of 0 ≤ xCa ≤ 0.2 and 0 ≤ yZr ≤ 1. Our calculations show that, when the Zr content increases, the difference in energy and difference in the structural parameters of the cubic, tetragonal, orthorhombic, and rhombohedral phases of BCZT are reduced. Eventually, all four phases merge into a multiphase with coexisting cubic structures (MPCCS) under Zr-rich conditions, indicating that BCZT undergoes phase transition from a normal ferroelectric (NFE) to a relaxor ferroelectric (RFE), consistent with experimental observations. The 3D diagram shows that the regions of merged and separated energy surfaces correspond to the regions of the RFE and NFE, respectively, which suggests that a MPCCS corresponds to a RFE. In addition, with the MPCCS model and Landau-Devonshire theory, we provide an interpretation of the high electromechanical properties of the BCZT relaxor ferroelectric and apply it to the classical local random field and micro-macro domain transition models.
RESUMO
Utilizing a combination of ab initio density-functional theory and thermodynamics formalism, we have established the microscopic mechanisms for oxidation of the binary and ternary alloy surfaces and provided a clear explanation for the experimental results of the oxidation. We construct three-dimensional surface phase diagrams (SPDs) for oxygen adsorption on three different Nb-X(110) (X = Ti, Al or Si) binary alloy surfaces. On the basis of the obtained SPDs, we conclude a general microscopic mechanism for the thermodynamic oxidation, that is, under O-rich conditions, a uniform single-phase SPD (type I) and a nonuniform double-phase SPD (type II) correspond to the sustained complete selective oxidation and the non-sustained partial selective oxidation by adding the X element, respectively. Furthermore, by revealing the framework of thermodynamics for the oxidation mechanism of ternary alloys through the comparison of the surface energies of two separated binary alloys, we provide an understanding for the selective oxidation behavior of the Nb ternary alloy surfaces. Using these general microscopic mechanisms, one could predict the oxidation behavior of any binary and multi-component alloy surfaces based on thermodynamics considerations.
RESUMO
The heating of a gold thin film by a single 10 fs laser pulse is modeled by a combined continuum-atomistic method considering the electron relaxation effect. Numerical results show that the temperature evolution and stress propagation proceed in the same manners as those for the subpicosecond laser irradiation. It is also found that the electron relaxation effect is insignificant and could be considerably overestimated by neglecting the ballistic energy transfer in the film.
RESUMO
The tensile behaviours of [111]-oriented SiC nanowires with various microstructures are investigated by using molecular dynamics simulations. The results revealed the influence of microstructures on the brittleness and plasticity of SiC nanowires. Plastic deformation is mainly induced by the anti-parallel sliding of 3C grains along an intergranular amorphous film parallel to the plane and inclined at an angle of 19.47° with respect to the nanowire axis. Our study suggests that the wide dispersion of mechanical properties of SiC nanowires observed in experiments might be attributed to their diverse microstructures.
RESUMO
The crackling noise due to scratching superhard nanocomposite coatings was investigated by using a simple stick-slip model. The optimum information extracted from statistical analysis, in terms of the Akaike information criterion, is in good agreement with real tests. As a nanocomposite coating approaches an optimal performance, the acoustic emission energy follows a power-law distribution and its behavior is likely to be independent of microscopic and macroscopic details. The results imply that a peculiar deformation behavior, due to the competition between different deformation mechanisms such as dislocation pile-ups in nanocrystalline grains and grain sliding-grain rotation within amorphous boundaries, plays a vital role in the nanostructure with superhardness.