Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Small ; 20(9): e2306695, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37857593

RESUMO

Reversible oxygen redox (OR) is considered as a paradigmatic avenue to boost the energy densities of layered oxide cathodes. However, its activation is largely coupled with the local coordination environment around oxygen, which is usually accompanied with irreversible oxygen release and unfavorable structure distortion. Herein, it is revealed that the synergistic effect of transition-metal (TM) vacancy and substitution element for modulating the OR activity and reversibility of layered Na0.67 MnO2 through multimodal operando synchrotron characterizations and electrochemical investigations. It is disclosed that TM vacancy can not only suppress the complicated phase transition but also stimulate the OR activity by creating nonbonding O 2p states via the Na─O─vacancy configurations. Notably, the substitution element plays a decisive role for regulating the reversibility of vacancy-boosted OR activity: the presence of strong Al─O bonds stabilizes the Mn-O motifs by sharing O with Al in the rigid Mn─O─Al frameworks, which mitigates TM migration and oxygen release induced by TM vacancy, leading to enhanced OR reversibility; while the introduction of weak Zn─O bonds exacerbates TM migration and irreversible oxygen release. This work clarifies the critical role of both TM vacancy and substitution element for regulating the OR chemistry, providing an effective avenue for designing high-performance cathodes employing anionic redox.

2.
Fish Shellfish Immunol ; 139: 108921, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37385461

RESUMO

This study aimed to evaluate the effects of dietary supplementation with Bacillus velezensis R-71003 combined with sodium gluconate on antioxidant capacity, immune response and resistance against Aeromonas hydrophila in common carp. In addition, the biocontrol potential of the secondary metabolites of B. velezensis R-71003 was also evaluated to analyze the possible mechanism of B. velezensis R-71003 against A. hydrophila. The results indicated that the antibacterial crude extract of B. velezensis R-71003 can destroy the cell wall of A. hydrophila. Moreover, the results showed that dietary B. velezensis R-71003 could promote antioxidant capacity, which significantly increased the activities of CAT and SOD and decreased the content of MDA. Additionally, B. velezensis R-71003 supplementation significantly enhanced the immunity of common carp, as measured by the mRNA expression levels of cytokine-related genes (TNF-α, TGF-ß, IL-1ß and IL-10). In addition, dietary B. velezensis R-71003 exhibited an upregulation of IL-10 and a downregulation of IL-1ß, coupled with higher survival rates when challenged with A. hydrophila compared to the positive group. Furthermore, compared to prechallenge, the mRNA expression levels of TLR-4, MyD88, IRAK1, TRAF6, TRIF and NF-κB in the head kidney of common carp were significantly increased after challenge. The fish fed the B. velezensis R-71003 diet showed lower expression of TLR-4, MyD88, IRAK1, TRAF6, TRIF and NF-κB after the challenge than those fed the control diet. Thus, this study revealed that B. velezensis R-71003 can improve the resistance of common carp to pathogenic bacteria by destroying bacterial cell walls and improving fish immunity by activating the TLR4 signaling pathway. Importantly, this study indicated that sodium gluconate has a positive effect on B. velezensis R-71003 in enhancing the anti-infection ability of common carp. The results of this study will lay the foundation for the application of B. velezensis R-71003 in combination with sodium gluconate as an alternative to antibiotics in aquaculture.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Antioxidantes/metabolismo , Suplementos Nutricionais , Interleucina-10/metabolismo , Aeromonas hydrophila/fisiologia , NF-kappa B/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like , Resistência à Doença , Dieta/veterinária , RNA Mensageiro , Carpas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Ração Animal/análise
3.
Soft Matter ; 18(3): 477-481, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34929727

RESUMO

A novel co-assembly material can emit strong CPL signals (λem = 485 nm, glum = +0.076/-0.064) from an achiral AIE-active ß-cyanostilbene (CYS) liquid crystal dye through intermolecular hydrogen bond (HB) interaction and chirality induction after a rapid cooling quench treatment.

4.
Ecotoxicol Environ Saf ; 228: 112977, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34781134

RESUMO

Heavy metal cadmium (Cd) pollution is a serious problem affecting the sustainable development of aquaculture and the safety of aquatic foods. Research about the use of probiotics to attenuate toxic damage caused by Cd2+ in aquatic animals has received widespread attention. Bacillus coagulans (B. coagulans), a kind of probiotics commonly used in aquaculture, has been shown to adsorb Cd2+ both in vivo and vitro. Here, we aimed to determine the effects of B. coagulans on Cd2+ bioaccumulation, gut barrier function, oxidative stress and gut microbiota in common carp following Cd2+ exposure. The fish were exposure to Cd2+ at 0 and 0.5 mg/L and/or fed a B. coagulans-containing diet at 107, 108 and 109 CFU/g for 8 weeks. The results indicated that B. coagulans can maintain gut barrier function in Cd2+-exposed fish by reducing Cd2+ bioaccumulation, increasing the mRNA levels of tight junction protein genes (occludin, claudin-2 and zonula occludens-1), and decreasing the levels of diamine oxidase and D-lactic acid. In addition, B. coagulans could relieve oxidative stress in Cd2+-exposed fish by restoring the activities of glutathione peroxidase, catalase and superoxide dismutase. Moreover, Cd2+ exposure decreased the intestinal microbiota diversity and changed the intestinal microbiota compositions in common carp. However, supplementation with B. coagulans could reverse the altered intestinal microbiota diversity and composition after Cd2+ exposure, decrease the abundance of some pathogens (Shewanella and Vibrio), and increase the abundance of probiotics (Bacillus and Lactobacillus). These results indicate that B. coagulans may serve as a potential antidote for alleviating Cd2+ toxicity.

5.
J Hazard Mater ; 472: 134444, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701724

RESUMO

The effects of antipsychotic drugs on aquatic organisms have received widespread attention owing to their widespread use and continued release in aquatic environments. The toxicological effects of antipsychotics on aquatic organisms, particularly fish, are unexplored, and the underlying mechanisms remain unelucidated. This study aimed to use common carp to explore the effects of antipsychotics (olanzapine [OLA] and risperidone [RIS]) on behavior and the potential mechanisms driving these effects. The fish were exposed to OLA (0.1 and 10 µg/L) and RIS (0.03 and 3 µg/L) for 60 days. Behavioral tests and neurological indicators showed that exposure to antipsychotics could cause behavioral abnormalities and neurotoxicity in common carp. Further, 16 S rRNA sequencing revealed gut microbiota alteration and decreased relative abundance of some strains related to SCFA production after OLA and RIS exposure. Subsequently, a pseudo-sterile common carp model was successfully constructed, and transplantation of the gut microbiota from antipsychotic-exposed fish caused behavioral abnormalities and neurotoxicity in pseudo-sterile fish. Further, SCFA supplementation demonstrated that SCFAs ameliorated the behavioral abnormalities and neurological damage caused by antipsychotic exposure. To our knowledge, the present study is the first to investigate the effects of antipsychotics on various complex behaviors (swimming performance and social behavior) in common carp, highlighting the potential health risks associated with antipsychotic drug-induced neurotoxicity in fish. Although these results do not fully elucidate the mechanisms underlying the effects of antipsychotic drugs on fish behavior, they serve as a valuable initial investigation and form the basis for future research.


Assuntos
Antipsicóticos , Comportamento Animal , Carpas , Microbioma Gastrointestinal , Risperidona , Poluentes Químicos da Água , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Antipsicóticos/toxicidade , Comportamento Animal/efeitos dos fármacos , Risperidona/toxicidade , Risperidona/farmacologia , Poluentes Químicos da Água/toxicidade , Olanzapina/toxicidade , Eixo Encéfalo-Intestino/efeitos dos fármacos , Natação , Comportamento Social
6.
Small Methods ; 7(9): e2201658, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37199184

RESUMO

Lithium-ion batteries (LIBs) have been ubiquitous in modern society, especially in the fields of electronic devices, electric vehicles and grid storage, while raising concerns about a tremendous number of spent batteries in the next five to ten years. As environmental awareness and resource security is gaining increasingly extensive attention, how to effectively deal with spent LIBs has become a challenging issue academically and industrially. Accordingly, the development of battery recycling has surfaced as a highly researched topic in the battery community. Recently, the structural and electrochemical restoration of recycled electrode materials have been proposed as a non-destructive method to save more energy and chemical agents compared with mature metallurgical methods. Such a refurbishment process of electrode materials is also regarded as a reverse process of their degradation in the working condition. Notably, synchrotron radiation technology, which is previously applied to diagnose battery degrade, has started to play major roles in gaining more insight into the structural restoration of electrode materials. Here, the contribution of synchrotron radiation technology to reveal the underlying degradation and regeneration mechanisms of LIBs cathodes is highlighted, providing a theoretical basis and guidance for the direct recycling and reuse of degraded cathodes.

7.
Ultrasound Med Biol ; 49(11): 2336-2345, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37544829

RESUMO

OBJECTIVE: Two-dimensional shear wave elastography (2-D SWE) has been proven to detect hyperlipidemia-induced elastic abnormality in the corpus cavernosum. This study investigated cytological factors affecting the elasticity of the corpus cavernosum in rabbits with hyperlipidemia using single-cell RNA sequencing (scRNA-seq). METHODS: Male New Zealand white rabbits were randomly divided into a hyperlipidemia group (high-cholesterol diet) and a control group (standard diet). Penile 2-D SWE was performed to detect the elastic abnormality in the corpus cavernosum. ScRNA-seq was performed to observe cellular changes in the corpus cavernosum of rabbits with hyperlipidemia. Immunohistochemistry, immunofluorescence and histological examinations were conducted to verify the results of scRNA-seq. RESULTS: Two-dimensional SWE revealed that the Young's modulus of the corpus cavernosum was significantly greater in the hyperlipidemia group than that in the control group (p < 0.001). Histological findings revealed extracellular matrix accumulation within the corpus cavernosum, with stronger staining of collagen types I and Ⅲ. ScRNA-seq revealed that fibroblasts, smooth muscle cells, and endothelial cells were the major cell types in the corpus cavernosum. A novel subtype of fibroblasts (myofibroblast) was discovered in the hyperlipidemia group, which was verified by immunofluorescence staining and gene ontology analysis. Fibroblasts, smooth muscle cells and endothelial cells were three cellular sources for myofibroblasts. CONCLUSION: Myofibroblasts are activated and proliferate and secrete large amounts of collagen fibers in the corpus cavernosum during hyperlipidemia, leading to abnormal Young's modulus detected by 2-D SWE and their recognition as a new factor affecting the hyperlipidemia-induced elastic abnormality of the corpus cavernosum.


Assuntos
Técnicas de Imagem por Elasticidade , Hiperlipidemias , Animais , Masculino , Coelhos , Colágeno , Técnicas de Imagem por Elasticidade/métodos , Células Endoteliais , Hiperlipidemias/complicações , Hiperlipidemias/diagnóstico por imagem , Miofibroblastos , Pênis/diagnóstico por imagem
8.
Sci Total Environ ; 856(Pt 1): 159054, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36170916

RESUMO

Olanzapine (OLA) is a common drug used to treat schizophrenia and has recently come under increasing scrutiny as an emerging contaminant. However, its impact on lipid metabolism in fish and its mechanisms of action are not well understood. In this study, common carp were exposed to 0, 10, 100, and 250 µM OLA for 60 days. The results indicated that OLA exposure increased weight gain, total cholesterol (TC), low-density lipoprotein (LDL), and triglycerides (TG) and decreased high-density lipoprotein (HDL). In addition, lipids accumulated in the liver of the common carp. To explore the underlying mechanisms of action, gut microbiota, short-chain fatty acids (SCFAs), liver transcripts, and genes related to lipid metabolism were measured. It was discovered that OLA exposure altered the common carp gut microbiota composition and increased the abundance of SCFA-producing bacteria. Correspondingly, this study showed that OLA exposure increased the levels of SCFAs, which are highly relevant to the development of lipid accumulation. Transcriptome sequencing results indicated that OLA exposure could change lipid metabolism signalling pathways, including steroid biosynthesis, the PPAR signalling pathway, asglycerophospholipid metabolism, glycerolipid metabolism, and fatty acid metabolic pathways of the common carp. Additionally, OLA exposure interrupted lipid metabolism by means of significant upregulation of lipid synthesis-related genes, including pparγ, srebp1, and fas. OLA exposure also resulted in significant lipolysis-related gene downregulation, including cpt, lpl, hsl, and pparα. The results of this study indicated that contamination of aquatic environments with OLA alters lipid metabolism in common carp. In addition, the underlying mechanism might be due in part to the modulation of the gut microbiota-SCFA-PPAR signalling pathway.


Assuntos
Antipsicóticos , Carpas , Microbioma Gastrointestinal , Animais , Carpas/metabolismo , Metabolismo dos Lipídeos , Olanzapina/metabolismo , Antipsicóticos/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fígado/metabolismo
9.
Adv Mater ; 35(8): e2209556, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36493783

RESUMO

Utilizing anionic redox activity within layered oxide cathode materials represents a transformational avenue for enabling high-energy-density rechargeable batteries. However, the anionic oxygen redox reaction is often accompanied with irreversible dynamic oxygen evolution, leading to unfavorable structural distortion and thus severe voltage decay and rapid capacity fading. Herein, it is proposed and validated that the dynamic oxygen evolution can be effectively suppressed through the synergistic surface CaTiO3 dielectric coating and bulk site-selective Ca/Ti co-doping for layered Na2/3 Ni1/3 Mn2/3 O2 . The surface dielectric coating layer not only suppresses the surface oxygen release but more importantly inhibits the bulk oxygen migration by creating a reverse electric field through dielectric polarization. Meanwhile, the site-selective doping of oxygen-affinity Ca into Na layers and Ti into transition metal layers effectively stabilizes the bulk oxygen through modulating the O 2p band center and the oxygen migration barrier. Such a strategy also leads to a reversible structural evolution with a low volume change because of the enhanced structural integrality and improved oxygen rigidity. Because of these synergistic advantages, the designed electrode exhibits greatly suppressed voltage decay and capacity fading upon long-term cycling. This study affords a promising strategy for regulating the dynamic oxygen evolution to achieve high-capacity layered cathode materials.

10.
ACS Appl Mater Interfaces ; 15(25): 30332-30341, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37322596

RESUMO

P2-type Mn-based layered oxides are among the most prevalent cathodes for sodium-ion batteries (SIBs) owing to their low cost, resource abundance, and high theoretical specific capacity. However, they usually suffer from Jahn-Teller (J-T) distortion from high-spin Mn3+ and poor cycling stability, resulting in rapid degradation of their structural and electrochemical properties. Herein, a stable P2-type Mn-based layered oxide is realized through a local construction strategy by introducing high-valence Ru4+ to overcome these issues. It has been revealed that the Ru substitution in the as-constructed Na0.6Mg0.3Mn0.6Ru0.1O2 (NMMRO) renders the following favorable effects. First, the detrimental P2-OP4 phase transition is effectively inhibited owing to the robust Ru-O covalency bond. Second, the Mg/Mn ordering is disturbed and the out-of-plane displacement of Mg2+ and in-plane migration of Mn4+ are suppressed, leading to improved structural stability. Third, the redox ability of Mn is increased by weakening the covalence between Mn and O through the local Ru-O-Mn configurations, which contributes to the attenuated J-T distortion. Last, the strong Ru-O covalency bond also leads to enhanced electron delocalization between Ru and O, which decreases the oxidation of oxygen anion and thereby reduces the driving force of metal migration. Because of these advantages, the structural integrity and electrochemical properties of NMMRO are largely improved compared with the Ru-free counterpart. This work provides deeper insights into the effect of local modulation for cationic/anionic redox-active cathodes for high-performance SIBs.

11.
J Hazard Mater ; 436: 129119, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35596994

RESUMO

The extensive application of metal-based nanoparticles can pose environmental risks, but how the alternation of wet and dry caused by natural precipitation and artificial irrigation affects the environmental fate of nanoparticles is still unclear. Here, we investigated the underlying mechanisms of wetting-drying cycles (WDCs) on the Cu bioavailability in paddy soil treated with CuO nanoparticles (100 and 500 mg/kg) during 140 days by comparing with drought and flooding conditions. The results show that soil moisture content greatly affected the soil pH and redox potential. The bioavailable Cu contents in the WDCs exposed to CuO nanoparticles were positively correlated to moisture content and WDCs number. The fit result of the pseudo-second-order equation indicates that WDCs greatly prevented the aging process of Cu in soil. Furthermore, WDCs transformed oxidizable Cu to water-soluble, acid extractable and reducible Cu. WDCs markedly promoted the degradation of dissolved organic matter and the transformation of acid-soluble sulfate to water-soluble inorganic sulfate, meanwhile, significantly enhanced the contents of crystalline iron oxides by 22-57% and 82-326% with respect to drought and flooding, but reduced the level of ferrous iron by 37-67% compared to the flooding. µ-XRF analysis shows that the fate of CuO nanoparticles might be mainly determined by Fe under WDCs condition but by S in flooded soil. This study can provide a comprehensive assessment on the impact of natural precipitation and artificial irrigation on the environmental risks of MNPs.


Assuntos
Nanopartículas Metálicas , Poluentes do Solo , Disponibilidade Biológica , Cobre/análise , Ferro/análise , Nanopartículas Metálicas/química , Solo/química , Poluentes do Solo/análise , Água/análise
12.
J Phys Chem Lett ; 12(1): 598-603, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33382604

RESUMO

Chiral emissive liquid crystals (N*-LCs) have been proved to greatly amplify the circularly polarized luminescence (CPL) signals due to highly regular spiral arrangement of dyes in a well-organized liquid crystals system. Normally, CPL materials with a high luminescence dissymmetry factor (glum) and quantum yield (QY) can meet the real application requirement. Here, four chiral aggregate-induced emission (AIE) active donors (Guests A1-A4: R-C2, R-C4, R-C6, R-C8, chiral dopant, and energy donor) and achiral AIE-active acceptors (Guest B: PBCy, CPL emitter) were doped into the commercial nematic liquid crystals E7 (N-LCs, Host) to form CPL-active ternary chiral emissive N-LCs (T-N*-LCs), respectively. This kind of T-N*-LCs could emit strong red CPL with QY = 16.56% and glum up to 1.51 through intermolecular energy transfer and chirality induction from the supramolecular self-assembly of T-N*-LCs. This work provides the effective strategy for the development of high glum CPL materials.

13.
Foods ; 9(4)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326246

RESUMO

Currently, our group is undertaking a program trying to evaluate the bifidogenic effect/activity of different prebiotics and their dose-effect relationships [...].

14.
Chem Commun (Camb) ; 56(84): 12829-12832, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-32966393

RESUMO

Ternary polymer dispersed cholesteric liquid crystals (PD-CLCs) prepared by doping AIE-active binaphthyl-based molecules (R/S-AD, chiral dopant) and the achiral liquid crystal fluorescent polymer, poly(p-phenylene ethynylene) (LC-PPE, CPL emitter) into 5CB, can emit strong circularly polarized luminescence (CPL) with gem up to 0.97. This work develops a new strategy for designing strong CPL materials.

15.
Can Fam Physician ; 55(2): 143-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19221071

RESUMO

OBJECTIVE: To review the evidence supporting selected complementary and alternative medicine approaches used in the treatment of irritable bowel syndrome (IBS). QUALITY OF EVIDENCE: MEDLINE (from January 1966), EMBASE (from January 1980), and the Cochrane Database of Systematic Reviews were searched until March 2008, combining the terms irritable bowel syndrome or irritable colon with complementary therapies, alternative medicine, acupuncture, fiber, peppermint oil, herbal, traditional, yoga, massage, meditation, mind, relaxation, probiotic, hypnotherapy, psychotherapy, cognitive therapy, or behavior therapy. Results were screened to include only clinical trials, systematic reviews, and meta-analyses. Level I evidence was available for most interventions. MAIN MESSAGE: Soluble fibre improves constipation and global IBS symptoms. Peppermint oil alleviates IBS symptoms, including abdominal pain. Probiotic trials show overall benefit for IBS but there is little evidence supporting the use of any specific strain. Hypnotherapy and cognitive-behavioural therapy are also effective therapeutic options for appropriate patients. Certain herbal formulas are supported by limited evidence, but safety is a potential concern. All interventions are supported by systematic reviews or meta-analyses. CONCLUSION: Several complementary and alternative therapies can be recommended as part of an evidence-based approach to the treatment of IBS; these might provide patients with satisfactory relief and improve the therapeutic alliance.


Assuntos
Terapias Complementares/métodos , Síndrome do Intestino Irritável/diagnóstico , Síndrome do Intestino Irritável/terapia , Qualidade de Vida , Terapias Complementares/estatística & dados numéricos , Suplementos Nutricionais , Medicamentos de Ervas Chinesas/uso terapêutico , Feminino , Seguimentos , Humanos , Hipnose/métodos , Masculino , Ontário , Satisfação do Paciente , Fitoterapia/métodos , Probióticos/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Medição de Risco , Sensibilidade e Especificidade , Perfil de Impacto da Doença , Resultado do Tratamento
16.
Microorganisms ; 7(11)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671870

RESUMO

An indole-3-acetic acid producing Bacillus altitudinis WR10 was previously isolated from the root of wheat (Triticum aestivum L.). In this study, the strain WR10 was used for relieving abiotic stresses in wheat under low phosphorus and high saline in hydroponic co-culture models. Significantly, strain WR10 improved wheat seed relative germination rate under salinity stress (200/400 mM NaCl) and the root dry weight in wheat seedlings under phosphorus stress (10 µM KH2PO3) when insoluble phosphates are available. To provide insights into its abiotic stress-alleviating properties, the strain was characterized further. WR10 grows well under different culture conditions. Particularly, WR10 resists salt (12% NaCl) and hydrolyzes both inorganic and organic insoluble phosphates. WR10 uses many plant-derived substrates as sole carbon and energy sources. It produces catalase, amylase, phosphatase, phytase, reductase, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. In addition, WR10 possesses long peritrichous flagella, and its biofilm formation, as well as phytase production, is induced by abiotic stresses. Overall, the salinity-alleviating property of WR10 in wheat can be attributed to its inherent tolerance to NaCl, formation of biofilm, and production of enzymes, like catalase, amylase, and ACC deaminase. Meanwhile, B. altitudinis WR10 reduces low-phosphorus stress in wheat by production of phosphatases and phytases in the presence of insoluble phosphates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA