Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 9(37): 21557-21563, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35521342

RESUMO

Acetylene hydrochlorination is an attractive chemical reaction for the manufacture of polyvinyl chloride (PVC), and the development efforts are focused on the search for non-mercury catalyst systems. Supported Pd-based catalysts have relatively high activity in the catalytic hydrochlorination of acetylene but are still deactivated rather quickly. Herein, we demonstrated that the atomically dispersed (NH4)2PdCl4 complex, distributed on activated carbon, enabled the highly active and stable production of the vinyl chloride monomer (VCM) through acetylene hydrochlorination under low temperature conditions. We found that the presence of nitrogen-containing ligands in the structure of the active center could remarkably improve the stability of the Pd-based catalysts when compared with the case of the conventional PdCl2 catalyst. Further analyses via X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) show that the variations in the Pd dispersion, chemical state and reduction property are caused by the nitrogen-containing ligands. Temperature-programmed desorption (TPD) characterizations illustrated that the N-containing ligands over the (NH4)2PdCl4/AC catalyst might enhance the adsorption of HCl. These findings suggest that in addition to strategies that target the doping modification of support materials, optimization of the structure of the active center complexes provides a new path for the design of highly active and stable Pd-based catalysts.

2.
Materials (Basel) ; 12(8)2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-31013614

RESUMO

Development of a sustainable process for designing and synthesising an active and stable catalyst for hydrochlorination of acetylene is challenging, yet crucial, for industrial vinyl chloride monomer (VCM) production. Herein, direct synthesis of bimetallic AuCu catalysts using organic aqua regia (OAR) preparation methods was investigated. In comparison with conventional aqua regia (AR), bimetallic AuCu catalysts synthesised from OAR exhibit enhanced activity and stability. After careful characterisation of the catalyst samples using X-ray diffraction patterns (XRD), Scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy (XPS), and Temperature-programmed desorption (TPD), this observation was justified for the following reasons: 1) the existence of sulphur and nitrogen atoms stabilised the cationic Au active sites, and 2) OAR helped to sustain the function of the Cu promotor by stabilising it. Advanced understanding on the importance of promoter stability has unveiled new perspectives for this research area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA