Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 23(1): 1026, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875815

RESUMO

BACKGROUND: Noninvasive and precise methods to estimate treatment response and identify hepatocellular carcinoma (HCC) patients who could benefit from transarterial chemoembolization (TACE) are urgently required. The present study aimed to investigate the ability of intratumoral and peritumoral radiomics based on contrast-enhanced magnetic resonance imaging (CE-MRI) to preoperatively predict tumor response to TACE in HCC patients. METHODS: A total of 138 patients with HCC who received TACE were retrospectively included and randomly divided into training and validation cohorts at a ratio of 7:3. Total 1206 radiomics features were extracted from arterial, venous, and delayed phases images. The inter- and intraclass correlation coefficients, the spearman's rank correlation test, and the gradient boosting decision tree algorithm were used for radiomics feature selection. Radiomics models on intratumoral region (TR) and peritumoral region (PTR) (3 mm, 5 mm, and 10 mm) were established using logistic regression. Three integrated radiomics models, including intratumoral and peritumoral region (T-PTR) (3 mm), T-PTR (5 mm), and T-PTR (10 mm) models, were constructed using TR and PTR radiomics scores. A clinical-radiological model and a combined model incorporating the optimal radiomics score and selected clinical-radiological predictors were constructed, and the combined model was presented as a nomogram. The discrimination, calibration, and clinical utilities were evaluated by receiver operating characteristic curve, calibration curve, and decision curve analysis, respectively. RESULTS: The T-PTR radiomics models performed better than the TR and PTR models, and the T-PTR (3 mm) radiomics model demonstrated preferable performance with the AUCs of 0.884 (95%CI, 0.821-0.936) and 0.911 (95%CI, 0.825-0.975) in both training and validation cohorts. The T-PTR (3 mm) radiomics score, alkaline phosphatase, tumor size, and satellite nodule were fused to construct a combined nomogram. The combined nomogram [AUC: 0.910 (95%CI, 0.854-0.958) and 0.918 (95%CI, 0.831-0.986)] outperformed the clinical-radiological model [AUC: 0.789 (95%CI, 0.709-0.863) and 0.782 (95%CI, 0.660-0.902)] in the both cohorts and achieved good calibration capability and clinical utility. CONCLUSIONS: CE-MRI-based intratumoral and peritumoral radiomics approach can provide an effective tool for the precise and individualized estimation of treatment response for HCC patients treated with TACE.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/terapia , Estudos Retrospectivos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Imageamento por Ressonância Magnética
2.
J Magn Reson Imaging ; 53(4): 1066-1079, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33217114

RESUMO

BACKGROUND: Preoperative prediction of early recurrence (ER) of hepatocellular carcinoma (HCC) plays a critical role in individualized risk stratification and further treatment guidance. PURPOSE: To investigate the role of radiomics analysis based on multiparametric MRI (mpMRI) for predicting ER in HCC after partial hepatectomy. STUDY TYPE: Retrospective. POPULATION: In all, 113 HCC patients (ER, n = 58 vs. non-ER, n = 55), divided into training (n = 78) and validation (n = 35) cohorts. FIELD STRENGTH/SEQUENCE: 1.5T or 3.0T, gradient-recalled-echo in-phase T1 -weighted imaging (I-T1 WI) and opposed-phase T1 WI (O-T1 WI), fast spin-echo T2 -weighted imaging (T2 WI), spin-echo planar diffusion-weighted imaging (DWI), and gradient-recalled-echo contrast-enhanced MRI (CE-MRI). ASSESSMENT: In all, 1146 radiomics features were extracted from each image sequence, and radiomics models based on each sequence and their combination were established via multivariate logistic regression analysis. The clinicopathologic-radiologic (CPR) model and the combined model integrating the radiomics score with the CPR risk factors were constructed. A nomogram based on the combined model was established. STATISTICAL TESTS: Receiver operating characteristic (ROC) curve analysis was used to evaluate the discriminative performance of each model. The potential clinical usefulness was evaluated by decision curve analysis (DCA). RESULTS: The radiomics model based on I-T1 WI, O-T1 WI, T2 WI, and CE-MRI sequences presented the best performance among all radiomics models with an area under the ROC curve (AUC) of 0.771 (95% confidence interval (CI): 0.598-0.894) in the validation cohort. The combined nomogram (AUC: 0.873; 95% CI: 0.756-0.989) outperformed the radiomics model and the CPR model (AUC: 0.742; 95% CI: 0.577-0.907). DCA demonstrated that the combined nomogram was clinically useful. DATA CONCLUSION: The mpMRI-based radiomics analysis has potential to predict ER of HCC patients after hepatectomy, which could enhance risk stratification and provide support for individualized treatment planning. EVIDENCE LEVEL: 4. TECHNICAL EFFICACY: Stage 4.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Imageamento por Ressonância Magnética Multiparamétrica , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Hepatectomia , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Imageamento por Ressonância Magnética , Estudos Retrospectivos
3.
Magn Reson Imaging ; 107: 88-99, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38242255

RESUMO

The chemical exchange saturation transfer technique serves as a valuable tool for generating in vivo image contrast based on the content of various proton groups, including amide protons, amine protons, and aliphatic protons. Among these, amide proton transfer-weighted (APTw) imaging has seen extensive development as a means to assess the biochemical status of lesions. The exchange from saturated amide protons to bulk water protons during and following the saturation ratio frequency pulse contributes to detectable APT signals. While APTw imaging has garnered significant attention in the central nervous system, demonstrating noteworthy findings in cerebral neoplasia, stroke, and Alzheimer's disease over the past decade, its application in the abdomen has been a relatively recent progression. Notably, studies have explored its utility in hepatocellular carcinoma, prostate cancer, and cervical carcinoma within the abdominal context. Despite these advancements, there is a paucity of reviews on APTw imaging in abdominal applications. This paper aims to fill this gap by providing a concise overview of the fundamental theories underpinning APTw imaging. Additionally, we systematically summarize its diverse clinical applications in the abdomen, with a particular focus on the digestive and urogenital systems. Finally, the manuscript concludes by discussing technical limitations and factors influencing APTw imaging in abdominal applications, along with prospects for future research.


Assuntos
Neoplasias Hepáticas , Prótons , Masculino , Humanos , Imageamento por Ressonância Magnética/métodos , Amidas , Abdome/diagnóstico por imagem
4.
Eur J Radiol ; 170: 111200, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37995512

RESUMO

PURPOSE: To compare the performances of gadoxetate disodium-enhanced MRI (EOB-MRI) and extracellular contrast agent-enhanced MRI (ECA-MRI) for predicting microvascular invasion (MVI) in HCC. MATERIALS AND METHODS: From November 2009 to December 2021, consecutive HCC patients who underwent preoperative contrast-enhanced MRI were retrospectively enrolled into either an ECA-MRI or EOB-MRI cohort. In the ECA-MRI cohort, a preoperative MVI score was constructed in the training dataset using a logistic regression model that evaluated pathological type. In a propensity score-matched testing dataset of the ECA-MRI cohort, the MVI score was validated and compared with a previously proposed EOB-MRI-based MVI score calculated in the EOB-MRI cohort. Time-to-early recurrence survival was evaluated by the Kaplan-Meier method with the log-rank test. RESULTS: A total of 536 patients were included (478 men; 53 years, interquartile range, 46-62 years), 322 (60.1 %) with pathologically confirmed MVI. Based on the training dataset, independent variables associated with MVI included serum alpha-fetoprotein > 400 ng/ml (odds ratio [OR] = 2.3), infiltrative appearance (OR = 4.9), internal artery (OR = 2.5) and nodule-in-nodule architecture (OR = 2.4), which were incorporated into the ECA-MRI-based MVI score. The testing dataset AUC of the ECA-MRI score was 0.720, which was comparable to that of the EOB-MRI-based MVI score (AUC = 0.721; P =.99). Patients from either the ECA-MRI or the EOB-MRI cohort with model-predicted MVI had significantly shorter time-to-early recurrence than those without MVI (P <.001). CONCLUSION: Based on the preoperative serum alpha-fetoprotein and three MRI features, ECA-MRI demonstrated comparable performance to EOB-MRI for predicting MVI in HCC.


Assuntos
Carcinoma Hepatocelular , Gadolínio DTPA , Neoplasias Hepáticas , Masculino , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/irrigação sanguínea , Meios de Contraste , Estudos Retrospectivos , alfa-Fetoproteínas , Invasividade Neoplásica , Imageamento por Ressonância Magnética/métodos
5.
Biomedicines ; 12(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38255165

RESUMO

In the realm of managing malignant liver tumors, the convergence of radiomics and machine learning has redefined the landscape of medical practice. The field of radiomics employs advanced algorithms to extract thousands of quantitative features (including intensity, texture, and structure) from medical images. Machine learning, including its subset deep learning, aids in the comprehensive analysis and integration of these features from diverse image sources. This potent synergy enables the prediction of responses of malignant liver tumors to various treatments and outcomes. In this comprehensive review, we examine the evolution of the field of radiomics and its procedural framework. Furthermore, the applications of radiomics combined with machine learning in the context of personalized treatment for malignant liver tumors are outlined in aspects of surgical therapy and non-surgical treatments such as ablation, transarterial chemoembolization, radiotherapy, and systemic therapies. Finally, we discuss the current challenges in the amalgamation of radiomics and machine learning in the study of malignant liver tumors and explore future opportunities.

6.
Cancers (Basel) ; 15(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37835371

RESUMO

In recent years, significant advancements in immunotherapy for hepatocellular carcinoma (HCC) have shown the potential to further improve the prognosis of patients with advanced HCC. However, in clinical practice, there is still a lack of effective biomarkers for identifying the patient who would benefit from immunotherapy and predicting the tumor response to immunotherapy. The immune microenvironment of HCC plays a crucial role in tumor development and drug responses. However, due to the complexity of immune microenvironment, currently, no single pathological or molecular biomarker can effectively predict tumor responses to immunotherapy. Magnetic resonance imaging (MRI) images provide rich biological information; existing studies suggest the feasibility of using MRI to assess the immune microenvironment of HCC and predict tumor responses to immunotherapy. Nevertheless, there are limitations, such as the suboptimal performance of conventional MRI sequences, incomplete feature extraction in previous deep learning methods, and limited interpretability. Further study needs to combine qualitative features, quantitative parameters, multi-omics characteristics related to the HCC immune microenvironment, and various deep learning techniques in multi-center research cohorts. Subsequently, efforts should also be undertaken to construct and validate a visual predictive tool of tumor response, and assess its predictive value for patient survival benefits. Additionally, future research endeavors must aim to provide an accurate, efficient, non-invasive, and highly interpretable method for predicting the effectiveness of immune therapy.

7.
Front Oncol ; 11: 582788, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868988

RESUMO

PURPOSE: To investigate the role of contrast-enhanced magnetic resonance imaging (CE-MRI) radiomics for pretherapeutic prediction of the response to transarterial chemoembolization (TACE) in patients with hepatocellular carcinoma (HCC). METHODS: One hundred and twenty-two HCC patients (objective response, n = 63; non-response, n = 59) who received CE-MRI examination before initial TACE were retrospectively recruited and randomly divided into a training cohort (n = 85) and a validation cohort (n = 37). All HCCs were manually segmented on arterial, venous and delayed phases of CE-MRI, and total 2367 radiomics features were extracted. Radiomics models were constructed based on each phase and their combination using logistic regression algorithm. A clinical-radiological model was built based on independent risk factors identified by univariate and multivariate logistic regression analyses. A combined model incorporating the radiomics score and selected clinical-radiological predictors was constructed, and the combined model was presented as a nomogram. Prediction models were evaluated by receiver operating characteristic curves, calibration curves, and decision curve analysis. RESULTS: Among all radiomics models, the three-phase radiomics model exhibited better performance in the training cohort with an area under the curve (AUC) of 0.838 (95% confidence interval (CI), 0.753 - 0.922), which was verified in the validation cohort (AUC, 0.833; 95% CI, 0.691 - 0.975). The combined model that integrated the three-phase radiomics score and clinical-radiological risk factors (total bilirubin, tumor shape, and tumor encapsulation) showed excellent calibration and predictive capability in the training and validation cohorts with AUCs of 0.878 (95% CI, 0.806 - 0.950) and 0.833 (95% CI, 0.687 - 0.979), respectively, and showed better predictive ability (P = 0.003) compared with the clinical-radiological model (AUC, 0.744; 95% CI, 0.642 - 0.846) in the training cohort. A nomogram based on the combined model achieved good clinical utility in predicting the treatment efficacy of TACE. CONCLUSION: CE-MRI radiomics analysis may serve as a promising and noninvasive tool to predict therapeutic response to TACE in HCC, which will facilitate the individualized follow-up and further therapeutic strategies guidance in HCC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA