Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(1): e2210211120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574649

RESUMO

Controllable in situ formation of nanoclusters with discrete active sites is highly desirable in heterogeneous catalysis. Herein, a titanium oxide-based Fenton-like catalyst is constructed using exfoliated Ti3C2 MXene as a template. Theoretical calculations reveal that a redox reaction between the surface Ti-deficit vacancies of the exfoliated Ti3C2 MXene and H2O2 molecules facilitates the in situ conversion of surface defects into titanium oxide nanoclusters anchoring on amorphous carbon (TiOx@C). The presence of mixed-valence Tiδ+ (δ = 0, 2, 3, and 4) within TiOx@C is confirmed by X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) characterizations. The abundant surface defects within TiOx@C effectively promote the generation of reactive oxygen species (ROS) leading to superior and stable Fenton-like catalytic degradation of atrazine, a typical agricultural herbicide. Such an in situ construction of Fenton-like catalysts through defect engineering also applies to other MXene family materials, such as V2C and Nb2C.


Assuntos
Peróxido de Hidrogênio , Titânio , Peróxido de Hidrogênio/química , Titânio/química , Domínio Catalítico , Catálise
2.
Small ; 20(3): e2304990, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37705122

RESUMO

The splitting of the C-C bonds of ethanol remains a key issue to be addressed, despite tremendous efforts made over the past several decades. This study highlights the enhancement mechanism of inexpensive NbN-modified Pd1 Sn3 -NbN/C towards the C-C bonds cleavage for alkaline ethanol oxidation reaction (EOR). The optimal Pd1 Sn3 -NbN/C delivers a catalytic activity up to 43.5 times higher than that of commercial Pd/C and high carbonate selectivity (20.5%) toward alkaline EOR. Most impressively, the Pd1 Sn3 -NbN/C presents good durability even after 25 200 s of chronoamperometric testing. The enhanced catalytic performance is mainly due to the interfacial interaction between PdSn and NbN, demonstrated by multiple structural characterization results. In addition, in situ ATR-SEIRAS (Attenuated total reflection-surface enhanced infrared absorption spectroscopy) results suggest that NbN facilitates the C-C bonds cleavage towards the alkaline EOR, followed by the enhanced OH adsorption to promote the subsequent oxidation of C1 intermediates after doping Sn. DFT (density functional theory) calculations indicate that the activation barriers of the C-H bond cleavage in CH3 CH2 OH, CH3 CHOH, CH3 CHO, CH3 CO, CH2 CO, and the C-C bond cleavage in CH3 CO, CH2 CO, CHCO are evidently reduced and the removal of adsorbed CH3 CO and CO becomes easier on the PdSn-NbN/C catalyst surface.

3.
Clin Genet ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075926

RESUMO

ATP6V1B2 encodes the subunit of the vacuolar H+-ATPase, which is an enzyme responsible for the acidification of intracellular organelles and essential for cell signaling and neurotransmitter release. The aim of the study is to identify the correlation between ATP6V1B2 and epilepsy. Trio-exome sequencing was performed. Reverse Transcription-PCR and Quantitative real-time PCR analyses were carried out to determine whether this variant leads to nonsense-mediated mRNA decay (NMD). Drosophila models with knocked-down homologous genes of ATP6V1B2 were generated to study the causal relationship between the ATP6V1B2 and the phenotype of epilepsy. We described a 5-year-old male with a novel variant c.1163delT(p.Tyr389IlefsTer13) in ATP6V1B2, who presented with epilepsy. The expression level of the premature termination codon (PTC) transcript was normal in the patient, which indicated that NMD evasion existed in the PTC transcript. We generated an animal model using Drosophila to study the knock down effects of Vha55, which is the ATP6V1B2 ortholog in fly. The Vha55 knockdown flies show seizure-like behaviors and climbing defects. This study expands the variation spectrum of the ATP6V1B2 gene. Cross-species animal model demonstrates the causal relationship between ATP6V1B2 defect and epilepsy, and shed new insights into the disease mechanism caused by ATP6V1B2 LOF variants.

4.
Biochem Genet ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37952039

RESUMO

SLC4A4 variants are the etiologies of inherited proximal renal tubular acidosis (pRTA), which results in metabolic acidosis, hypokalemia, glaucoma, band keratopathy, and cataract. This study aims to characterize SLC4A4 variant and uniparental isodisomy of chromosome 4 in a patient, and analyse the functional characterization of SLC4A4 variants. This study analyzed renal tubular acidosis disease genes by whole exome sequencing (WES). H3M2 algorithm was used to analyze the run of homozygosity region in chromosomal regions in trio-WES data. The pathogenicity analysis of variants was performed using bioinformatics tools. Additionally, protein stability was analyzed by cycloheximide chase assay. Whole-cell patch clamping was used to examine the electrophysiological properties of NBCe1-A. A novel homozygous SLC4A4 variant was identified in the patient: a missense variant c.496C > T, p. Arg166Trp (NM_003759.4). But the father was heterozygous variant carrier, and the mother did not detect the variant. The H3M2 and UPDio algorithm revealed paternal uniparental isodisomy on chromosome 4 in the patient. SIFT, Poly Phen-2, FATHMM and Mutant Taster showed that the variant might be pathogenic. The tertiary structure analysis showed that the variant could cause structural damage to NBCe1 protein. Foldx results showed that the protein stability of the variant was slightly reduced. Cycloheximide chase assay demonstrated that the variant affects protein stability. The result of electrophysiological studies showed that the variant altered Na+/HCO3- cotransport activity of protein. In conclusion, the study is the first to report a pRTA patient with Arg166Trp variant with UPiD (4) pat and analyze the function of Arg166Trp variant.

5.
BMC Pediatr ; 22(1): 436, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858850

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is an X-linked recessive inherited disorder caused by the absence of the Dystrophin protein. Cerebral cavernous malformations (CCMs) are the most common vascular abnormalities in the central nervous system caused by the absence of the products of the CCM genes. Most CCMs cases reported occurring in a sporadic form are often asymptomatic. CASE PRESENTATION: We report a rare case of a 7-year-old Chinese boy with a co-existing DMD and sporadic CCMs. We found classic clinical features of DMD and non-specific pathological changes in his brain. We made the definitive diagnosis based on the results of whole-exome sequencing (WES), a repeat from exon 3 to exon 9 of the DMD inherited from his mother, and a de novo heterozygote nonsense mutation C.418G > T of the PDCD10 exon 6. CONCLUSION: We should take care to avoid missed diagnoses in patients with multiple genetic disorders.


Assuntos
Diagnóstico Ausente , Distrofia Muscular de Duchenne , Criança , Éxons/genética , Heterozigoto , Humanos , Masculino , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Mutação , Sequenciamento do Exoma
7.
Angew Chem Int Ed Engl ; 55(49): 15240-15245, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27805782

RESUMO

Electrochemical water splitting to generate molecular hydrogen requires catalysts that are cheap, active, and stable, particularly for alkaline electrolyzers, where the cathodic hydrogen evolution reaction is slower in base than in acid even on platinum. Herein, we describe the synthesis of new hollow Chevrel-phase NiMo3 S4 and its alkaline hydrogen evolution reaction (HER) performance: onset potential of -59 mV, Tafel slope of 98 mV per decade, and exchange current density of 3.9×10-2  mA cm-2 . This Chevrel-phase chalcogenide also demonstrates outstanding long-term stability under harsh HER cycling conditions. Chevrel-phase nanomaterials show promise as efficient, low-cost catalysts for alkaline electrolyzers.

8.
J Am Chem Soc ; 136(19): 7077-84, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24761994

RESUMO

Electrochemical water splitting is a clean technology that can store the intermittent renewable wind and solar energy in H2 fuels. However, large-scale H2 production is greatly hindered by the sluggish oxygen evolution reaction (OER) kinetics at the anode of a water electrolyzer. Although many OER electrocatalysts have been developed to negotiate this difficult reaction, substantial progresses in the design of cheap, robust, and efficient catalysts are still required and have been considered a huge challenge. Herein, we report the simple synthesis and use of α-Ni(OH)2 nanocrystals as a remarkably active and stable OER catalyst in alkaline media. We found the highly nanostructured α-Ni(OH)2 catalyst afforded a current density of 10 mA cm(-2) at a small overpotential of a mere 0.331 V and a small Tafel slope of ~42 mV/decade, comparing favorably with the state-of-the-art RuO2 catalyst. This α-Ni(OH)2 catalyst also presents outstanding durability under harsh OER cycling conditions, and its stability is much better than that of RuO2. Additionally, by comparing the performance of α-Ni(OH)2 with two kinds of ß-Ni(OH)2, all synthesized in the same system, we experimentally demonstrate that α-Ni(OH)2 effects more efficient OER catalysis. These results suggest the possibility for the development of effective and robust OER electrocatalysts by using cheap and easily prepared α-Ni(OH)2 to replace the expensive commercial catalysts such as RuO2 or IrO2.

9.
J Atten Disord ; 28(11): 1425-1436, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38166458

RESUMO

BACKGROUND: Lipid metabolism plays an essential role in nervous system development. Cholesterol deficiency leads to a variety of neurodevelopmental disorders, such as autism spectrum disorder and fragile X syndrome. There have been a lot of efforts to search for biological markers associated with and causal to ADHD, among which lipid is one possible etiological factor that is quite widely studied. We aimed to evaluate the causal relationship between lipids traits, lipid-lowering drugs, and attention deficit hyperactivity disorder (ADHD) outcomes using Mendelian randomization (MR) studies. METHODS: We used summary data from genome-wide association studies to explore the causal relationships between circulating lipid-related traits and ADHD. Then, quantitative trait loci for the expression of lipid-lowering drug target genes and genetic variants associated with lipid traits were extracted. Summary-data-based MR and inverse-variance-weighted MR (IVW-MR) were used to investigate the correlation between the expression of these drug-target genes and ADHD. RESULTS: After rigorous screening, 939 instrumental variables were finally included for univariable mendelian randomization analysis. However, there is no correlation between lipid profile and ADHD risk. Drug target analysis by IVW-MR method observed that APOB-mediated low-density lipoprotein cholesterol was associated with lower ADHD risk (odds ratio [OR] = 0.90, 95% confidence interval [CI] [0.84, 0.97]; p = .007), whereas LPL-mediated triglycerides levels were associated with a higher risk of ADHD (OR = 1.13, 95% CI [1.06, 1.21]; p < .001). CONCLUSION: Our results suggest that APOB gene and LPL gene may be candidate drug target genes for the treatment of ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Hipolipemiantes/uso terapêutico , Lipídeos/sangue , Locos de Características Quantitativas , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/efeitos dos fármacos
10.
Glob Med Genet ; 11(1): 25-28, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38229969

RESUMO

Background Aminoacyl-tRNA synthetases (ARSs) are evolutionarily conserved enzymes that ensure the accuracy of the translation process. Isoleucyl-tRNA synthetase 2 ( IARS2 ) gene is a type of ARS that encodes mitochondrial isoleucine-tRNA synthetase. Pathogenic variants in the IARS2 gene are associated with mitochondrial disease which involves several patients presenting broad clinical phenotypes. These clinical phenotypes include West syndrome, Leigh syndrome, and Cataract, growth hormone deficiency, sensory neuropathy, sensorineural hearing loss, and skeletal dysplasia syndrome. Only 29 cases have been reported worldwide. The patient manifested recurrent convulsions, and specific clinical manifestations included electrolyte disorders and recurrent infections. Methods Whole-exome sequencing was performed on the child with West syndrome. Three-dimensional structure reconstruction and thermodynamic stability prediction were performed to further analyze the relationship between variation and phenotype. Conclusion This study further expands the clinical spectrum of IARS2 pathogenic variants. The case summaries help raise clinical awareness of IARS2 -associated disease and reduce misdiagnosis. Result In this report, a 13-month-old girl was diagnosed with West syndrome and Leigh syndrome for 7 months. Compound heterozygous variants in the IARS2 gene (NM_018060.4), c.2450G>A (Arg817His) and copy number variation (NC_000001. 11: g. (220267549_220284289) del), were detected by WES. This study further expands the clinical spectrum of IARS2 pathogenic variants. The case summaries help raise clinical awareness of IARS2-associated disease and reduce misdiagnosis.

11.
Nat Commun ; 15(1): 76, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167348

RESUMO

Ni-based hydrogen oxidation reaction (HOR) electrocatalysts are promising anode materials for the anion exchange membrane fuel cells (AEMFCs), but their application is hindered by their inherent instability for practical operations. Here, we report a TiO2 supported Ni4Mo (Ni4Mo/TiO2) catalyst that can effectively catalyze HOR in alkaline electrolyte with a mass activity of 10.1 ± 0.9 A g-1Ni and remain active even up to 1.2 V. The Ni4Mo/TiO2 anode AEMFC delivers a peak power density of 520 mW cm-2 and durability at 400 mA cm-2 for nearly 100 h. The origin for the enhanced activity and stability is attributed to the down-shifted d band center, caused by the efficient charge transfer from TiO2 to Ni. The modulated electronic structure weakens the binding strength of oxygen species, rendering a high stability. The Ni4Mo/TiO2 has achieved greatly improved stability both in half cell and single AEMFC tests, and made a step forward for feasibility of efficient and durable AEMFCs.

12.
Heliyon ; 10(5): e26912, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38455531

RESUMO

Objectives: Methylmalonic acidemia (MMA) is a rare inborn genetic disorder that is characterized by increased levels of methylmalonic acid in blood plasma and urine. Isolated methylmalonic acidemia is one of the most common types of MMA and is caused by mutations in the gene encoding methyl-malonyl coenzyme A mutase (MMUT). In this study, we investigated the possible mechanisms underlying the symptoms of isolated MMA in a patient by molecular analysis. Methods: PCR amplification and Sanger sequencing analysis was performed to identify variants in the MMUT gene in the proband and his family. Furthermore, minigene constructs were generated to validate the splicing defects in the MMUT gene variant identified in the proband. Results: The 3-year-old patient was admitted to the hospital with symptoms of MMA, including fever, convulsions, and vomiting. He showed metabolic acidosis, high levels of methylmalonic acid in blood and urine, and normal blood homocysteine levels. Genetic analysis demonstrated that the patient was a compound heterozygous carrier of two variants in the MMUT gene: a missense c.278G > A variant that has already been reported in a patient with the severe mut° phenotype; and a novel splice site variant c.2125-2A > G. RT-PCR analysis showed that, while the novel variant clearly alters splicing, a minor amount of a full-length transcript is generated, suggesting that a wild-type protein may be produced although at a lower quantitative level. The patient's condition improved after treatment with vitamin B12. Serious complications were not reported during follow-up at age 5. Conclusions: We identified a novel splice site variant that partially disrupts normal splicing of the MMUT pre-mRNA. Production of a reduced amount of full-length transcript is responsible for the mild clinical phenotype observed in this patient. Functional studies have proven useful in exploring the genotype-phenotype association and in providing guidance for the genetic diagnosis of MMA.

13.
Front Pediatr ; 10: 890147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061388

RESUMO

Proximal renal tubular acidosis (pRTA) with ocular abnormalities is an autosomal recessive disease caused by variants in the Solute Carrier Family 4 Member 4 (SLC4A4) gene. Patients present with metabolic acidosis and low plasma bicarbonate concentration (3∼17 mmol/L). In addition, they are often accompanied by ocular abnormalities, intellectual disability, and growth retardation. The patient underwent whole exome sequencing (WES) and bioinformatics analysis of variant pathogenicity in this study. Then, a minigene assay was conducted to analyze the splicing site variant further. Compound heterozygous variants in the SLC4A4 gene (NM_003759.3), c.145C > T (p.Arg49*) and c.1499 + 1G > A, were detected by WES. The minigene assay showed an mRNA splicing aberration caused by the c.1499 + 1G > A variant. Compared with the wild type, the mutant type caused 4-base insertion between exons 10 and 11 of SLC4A4 after expression in HEK293 cells. In conclusion, the c.1499 + 1G > A variant in the SLC4A4 gene may be one of the genetic causes in the patient. Moreover, our study provides the foundation for future gene therapy of such pathogenic variants.

14.
Front Genet ; 13: 852764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432457

RESUMO

Background: Menkes disease (MD) is a rare X-linked connective tissue disorder of copper metabolism caused by pathogenic variant(s) in ATP7A gene. The aim of the present study is to determine the clinical characteristics and molecular basis of one patient with MD. Methods: One 10-month-old Chinese boy who met the clinical manifestations of MD was enrolled in this study. Whole genome sequencing (WGS) was performed in the patient in order to identify the variant(s), followed by Sanger sequencing. RNA sequencing (RNA-seq) from whole blood was subsequently applied to assess the effect of variant on transcription levels, and reverse transcriptase-polymerase chain reaction (RT-PCR) was performed for further validation. In addition, X chromosome inactivation (XCI) status of the patient's mother at the DNA level was measured by capillary electrophoresis. Results: The patient suffered from intermittent convulsions for more than 6 months, with psychomoto retardation and neurodegenerations. The patient also had curly hair, hypopigmented skin, cutis laxa, decreased muscle strength and hypotonia. MRI showed the intracranial arteries were tortuous with some "spiral" changes. The patient's serum ceruloplasmin level was low. WGS revealed one novel hemizygous variant, c.2627-501C > T (NM_000,052.7), located in the deep intronic sequence of ATP7A gene. Sanger sequencing confirmed that the variant was inherited from his mother. RNA-seq confirmed the variant itself, and identified a pseudo-exon inserted between exons 12 and 13 in mRNA of ATP7A. The sequencing results of RT-PCR from the patient confirmed this finding, while neither of his parents detected aberrant splicing. The Capillary electrophoresis results showed that the patient's mother had a skewed XCI. Conclusion: Our finding of the variant enlarges the variant spectrum in the ATP7A gene. This is a novel deep intronic variant which leads to the activation of a pseudo-exons in the ATP7A gene, and it demonstrates the usefulness of WGS combined with RNA-seq, in terms of revealing disease-causing variants in non-coding regions. Furthermore, the fact that the deep intronic variants cause disease by the activation of pseudo-exon inclusion indicates that in MD this might be an important mechanism.

15.
Front Pediatr ; 10: 838341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265567

RESUMO

Background: ß-Ureidopropionase deficiency is a rare autosomal recessive disease affecting the last step of pyrimidine degradation. Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome is a rare inherited disorder caused by genetic defects in mitochondrial DNA. Case Presentation: One 8-year-old boy presented with dizziness, vomiting, and convulsions. The gas chromatography-mass spectrometry results suggested ß-ureidopropionase deficiency. The whole-exome sequencing results revealed homozygous missense variant c.977G>A (p.R326Q) in UPB1. However, the patient presented with persistent hyperlactacidemia and metabolic acidosis, which did not correspond to the classic features of ß-ureidopropionase deficiency. Combined with the manifestations of developmental delay, poor academic performance, and poor sports stamina, whole-mitochondrial-genome sequencing was performed. The results exhibited the variant m.3243A>G of MT-TL1 gene. The level of heterogeneity was 65% in the patient and 17.8% in his mother. Eventually, the final diagnosis of ß-ureidopropionase deficiency combined with MELAS syndrome was made. Conclusion: The report about ß-ureidopropionase deficiency caused by a nuclear gene variant and MELAS syndrome caused by a mitochondrial gene variant coexisting in the same patient enriches the clinical study of these two rare diseases.

16.
Front Med (Lausanne) ; 8: 602691, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222269

RESUMO

Urinary tract infections (UTIs) are one of the most common infectious diseases. UTIs are mainly caused by uropathogenic Escherichia coli (UPEC), and are either upper or lower according to the infection site. Fimbriae are necessary for UPEC to adhere to the host uroepithelium, and are abundant and diverse in UPEC strains. Although great progress has been made in determining the roles of different types of fimbriae in UPEC colonization, the contributions of multiple fimbriae to site-specific attachment also need to be considered. Therefore, the distribution patterns of 22 fimbrial genes in 90 UPEC strains from patients diagnosed with upper or lower UTIs were analyzed using PCR. The distribution patterns correlated with the infection sites, an XGBoost model with a mean accuracy of 83.33% and a mean area under the curve (AUC) of the receiver operating characteristic (ROC) of 0.92 demonstrated that fimbrial gene distribution patterns could predict the localization of upper and lower UTIs.

17.
J Am Chem Soc ; 131(43): 15669-77, 2009 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-19824642

RESUMO

Design of highly active nanoscale catalysts for electro-oxidation of small organic molecules is of great importance to the development of efficient fuel cells. Increasing steps on single-crystal Pt surfaces is shown to enhance the activity of CO and methanol electro-oxidation up to several orders of magnitude. However, little is known about the surface atomic structure of nanoparticles with sizes of practical relevance, which limits the application of fundamental understanding in the reaction mechanisms established on single-crystal surfaces to the development of active, nanoscale catalysts. In this study, we reveal the surface atomic structure of Pt nanoparticles supported on multiwall carbon nanotubes, from which the amount of high-index surface facets on Pt nanoparticles is quantified. Correlating the surface steps on Pt nanoparticles with the electrochemical activity and stability clearly shows the significant role of surface steps in enhancing intrinsic activity for CO and methanol electro-oxidation. Here, we show that increasing surface steps on Pt nanoparticles of approximately 2 nm can lead to enhanced intrinsic activity up to approximately 200% (current normalized to Pt surface area) for electro-oxidation of methanol.

18.
Adv Mater ; 31(31): e1808066, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30932265

RESUMO

Electrochemical energy storage and conversion through hydrogen is essential for a clean and sustainable energy system. Highly efficient hydrogen electrocatalysts play a key role in the electrochemical transformation reactions. A comprehensive understanding of the hydrogen reaction kinetics and mechanisms is critical for the catalyst design and development. Especially pH-dependent hydrogen evolution and oxidation reaction (HER/HOR) kinetics receives increasing interest, and understanding its origin adds new knowledge to fundamental hydrogen electrocatalysis. Here, a detailed description of kinetic analysis and reaction mechanisms for HER/HOR, and a brief summary about recent development of highly efficient and cost-effective hydrogen electrocatalysts are presented. Lastly, recent advances in the fundamental understanding of pH-dependent hydrogen electrocatalysis are discussed.

19.
J Am Chem Soc ; 130(42): 13818-9, 2008 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-18811156

RESUMO

Atomically resolved structures and compositions of Pt alloy nanoparticles were obtained using aberration-corrected high-angle dark field imaging, which was correlated to specific ORR activity based on a Pt surface area. The enhanced specific ORR activity (approximately 2 times relative to Pt) of acid-treated "Pt3Co" nanoparticles can be related to composition variations at the atomic scale and the formation of percolated Pt-rich and Pt-poor regions within individual particles. Upon annealing, we show direct evidence of surface Pt sandwich-segregation structures, which correspond to a specific ORR activity approximately 4 times relative to Pt.

20.
Sci Adv ; 2(3): e1501602, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-27034988

RESUMO

Understanding how pH affects the activity of hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) is key to developing active, stable, and affordable HOR/HER catalysts for hydroxide exchange membrane fuel cells and electrolyzers. A common linear correlation between hydrogen binding energy (HBE) and pH is observed for four supported platinum-group metal catalysts (Pt/C, Ir/C, Pd/C, and Rh/C) over a broad pH range (0 to 13), suggesting that the pH dependence of HBE is metal-independent. A universal correlation between exchange current density and HBE is also observed on the four metals, indicating that they may share the same elementary steps and rate-determining steps and that the HBE is the dominant descriptor for HOR/HER activities. The onset potential of CO stripping on the four metals decreases with pH, indicating a stronger OH adsorption, which provides evidence against the promoting effect of adsorbed OH on HOR/HER.


Assuntos
Concentração de Íons de Hidrogênio , Hidrogênio/química , Metais/química , Oxirredução , Platina/química , Monóxido de Carbono/química , Catálise , Eletroquímica , Eletrólitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA