Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(19): 13391-13398, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691098

RESUMO

Inverted p-i-n perovskite solar cells (PSCs) are easy to process but need improved interface characteristics with reduced energy loss to prevent efficiency drops when increasing the active photovoltaic area. Here, we report a series of poly ferrocenyl molecules that can modulate the perovskite surface enabling the construction of small- and large-area PSCs. We found that the perovskite-ferrocenyl interaction forms a hybrid complex with enhanced surface coordination strength and activated electronic states, leading to lower interfacial nonradiative recombination and charge transport resistance losses. The resulting PSCs achieve an enhanced efficiency of up to 26.08% for small-area devices and 24.51% for large-area devices (1.0208 cm2). Moreover, the large-area PSCs maintain >92% of the initial efficiency after 2000 h of continuous operation at the maximum power point under 1-sun illumination and 65 °C.

2.
Science ; 376(6591): 416-420, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35446656

RESUMO

Further enhancing the performance and stability of inverted perovskite solar cells (PSCs) is crucial for their commercialization. We report that the functionalization of multication and halide perovskite interfaces with an organometallic compound, ferrocenyl-bis-thiophene-2-carboxylate (FcTc2), simultaneously enhanced the efficiency and stability of inverted PSCs. The resultant devices achieved a power conversion efficiency of 25.0% and maintained >98% of their initial efficiency after continuously operating at the maximum power point for 1500 hours under simulated AM1.5 illumination. Moreover, the FcTc2-functionalized devices passed the international standards for mature photovoltaics (IEC61215:2016) and have exhibited high stability under the damp heat test (85°C and 85% relative humidity).

3.
Animals (Basel) ; 11(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672178

RESUMO

The inoculation of one-day-old broiler chicks with the cecal contents from a mature broiler breeder resulted in a highly diverse and uniform cecal bacterial community. CM did not affect feed consumption, weight gain, nor the richness, evenness, or diversity of the cecal bacterial community. However, the structure of the bacterial community was altered in birds fed the CM diet. Although the CM diet was formulated to contain equivalent metabolizable energy to the control diet, it contained more dietary fiber. The abundance of bacterial families, including those that are known to contain species able to metabolize fiber was altered (e.g., bacteria within the families, Methanobacteriaceae, Atopobiaceae, Prevotellaceae, Clostridiales Family XIII, Peptostreptococcaceae, and Succinivibrionaceae), and concentrations of SCFAs were higher in the ceca of birds fed the CM diet. Moreover, concentrations of isoleucine, isobutyrate, glutamate, and 2-oxoglutarate were higher, whereas concentrations of phenyllactic acid, indole, glucose, 3-phenylpropionate, and 2-oxobutyrate were lower in the digesta of chickens that were fed CM. The metabolic profiles of pancreas, liver, and breast muscle tissues of birds fed the CM diet differed from control birds. Metabolites that were associated with energy production, protection against oxidative stress, and pathways of amino acid and glycerophospholipid metabolism had altered concentrations in these tissues. Some of the observed changes in metabolite levels may indicate an increased disease risk in birds fed the CM diet (e.g., pancreatitis), and others suggested that birds mounted metabolic response to offset the adverse impacts of CM (e.g., oxidative stress in the liver).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA