Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 218: 374-387, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29704833

RESUMO

Human activities on floodplains have severely disrupted the regeneration of foundation riparian shrub and tree species of the Salicaceae family (Populus and Salix spp.) throughout the Northern Hemisphere. Restoration ecologists initially tackled this problem from a terrestrial perspective that emphasized planting. More recently, floodplain restoration activities have embraced an aquatic perspective, inspired by the expanding practice of managing river flows to improve river health (environmental flows). However, riparian Salicaceae species occupy floodplain and riparian areas, which lie at the interface of both terrestrial and aquatic ecosystems along watercourses. Thus, their regeneration depends on a complex interaction of hydrologic and geomorphic processes that have shaped key life-cycle requirements for seedling establishment. Ultimately, restoration needs to integrate these concepts to succeed. However, while regeneration of Salicaceae is now reasonably well-understood, the literature reporting restoration actions on Salicaceae regeneration is sparse, and a specific theoretical framework is still missing. Here, we have reviewed 105 peer-reviewed published experiences in restoration of Salicaceae forests, including 91 projects in 10 world regions, to construct a decision tree to inform restoration planning through explicit links between the well-studied biophysical requirements of Salicaceae regeneration and 17 specific restoration actions, the most popular being planting (in 55% of the projects), land contouring (30%), removal of competing vegetation (30%), site selection (26%), and irrigation (24%). We also identified research gaps related to Salicaceae forest restoration and discuss alternative, innovative and feasible approaches that incorporate the human component.


Assuntos
Ecossistema , Florestas , Salicaceae , Humanos , Populus , Rios
2.
Ecol Appl ; 27(6): 1789-1804, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28445000

RESUMO

Most studies assessing vegetation response following control of invasive Tamarix trees along southwestern U.S. rivers have been small in scale (e.g., river reach), or at a regional scale but with poor spatial-temporal replication, and most have not included testing the effects of a now widely used biological control. We monitored plant composition following Tamarix control along hydrologic, soil, and climatic gradients in 244 treated and 172 reference sites across six U.S. states. This represents the largest comprehensive assessment to date on the vegetation response to the four most common Tamarix control treatments. Biocontrol by a defoliating beetle (treatment 1) reduced the abundance of Tamarix less than active removal by mechanically using hand and chain-saws (2), heavy machinery (3) or burning (4). Tamarix abundance also decreased with lower temperatures, higher precipitation, and follow-up treatments for Tamarix resprouting. Native cover generally increased over time in active Tamarix removal sites, however, the increases observed were small and was not consistently increased by active revegetation. Overall, native cover was correlated to permanent stream flow, lower grazing pressure, lower soil salinity and temperatures, and higher precipitation. Species diversity also increased where Tamarix was removed. However, Tamarix treatments, especially those generating the highest disturbance (burning and heavy machinery), also often promoted secondary invasions of exotic forbs. The abundance of hydrophytic species was much lower in treated than in reference sites, suggesting that management of southwestern U.S. rivers has focused too much on weed control, overlooking restoration of fluvial processes that provide habitat for hydrophytic and floodplain vegetation. These results can help inform future management of Tamarix-infested rivers to restore hydrogeomorphic processes, increase native biodiversity and reduce abundance of noxious species.


Assuntos
Biota , Plantas , Tamaricaceae , Controle de Plantas Daninhas/métodos , Animais , Besouros , Incêndios , Espécies Introduzidas , Controle Biológico de Vetores/métodos , Dinâmica Populacional , Rios , Sudoeste dos Estados Unidos , Árvores
3.
Am J Bot ; 102(8): 1268-76, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26290550

RESUMO

UNLABELLED: • PREMISE OF THE STUDY: Mountainous regions support high plant productivity, diversity, and endemism, yet are highly vulnerable to climate change. Historical records and model predictions show increasing temperatures across high elevation regions including the Southern Rocky Mountains, which can have a strong influence on the performance and distribution of montane plant species. Rare plant species can be particularly vulnerable to climate change because of their limited abundance and distribution.• METHODS: We tracked the phenology of rare and endemic species, which are identified as imperiled, across three different habitat types with herbarium records to determine if flowering time has changed over the last century, and if phenological change was related to shifts in climate.• KEY RESULTS: We found that the flowering date of rare species has accelerated 3.1 d every decade (42 d total) since the late 1800s, with plants in sagebrush interbasins showing the strongest accelerations in phenology. High winter temperatures were associated with the acceleration of phenology in low elevation sagebrush and barren river habitats, whereas high spring temperatures explained accelerated phenology in the high elevation alpine habitat. In contrast, high spring temperatures delayed the phenology of plant species in the two low-elevation habitats and precipitation had mixed effects depending on the season.• CONCLUSIONS: These results provide evidence for large shifts in the phenology of rare Rocky Mountain plants related to climate, which can have strong effects on plant fitness, the abundance of associated wildlife, and the future of plant conservation in mountainous regions.


Assuntos
Mudança Climática , Magnoliopsida/fisiologia , Dispersão Vegetal , Colorado , Ecossistema , Espécies em Perigo de Extinção , Reprodução , Estações do Ano , Especificidade da Espécie , Temperatura
4.
J Environ Manage ; 158: 85-94, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25974311

RESUMO

We examined how restoration of riparian vegetation has been implemented and evaluated in the scientific literature during the past 25 years. A total of 169 papers were read systematically to extract information about the following: 1) restoration strategies applied, 2) scale of monitoring and use of reference sites, 3) metrics used for evaluation, and 4) drivers of success. Hydro-geomorphic approaches (e.g., dam operations, controlled floods, landform reconfiguration) were the most frequent, followed by active plant introduction, exotic species control, natural floodplain conversion and grazing and herbivory control. Our review revealed noteworthy limitations in the spatio-temporal approaches chosen for evaluation. Evaluations were mostly from one single project and frequently ignored the multi-dimensional nature of rivers: landscape spatial patterns were rarely assessed, and most projects were assessed locally (i.e., ≤meander scale). Monitoring rarely lasted for more than six years and the projects evaluated were usually not more than six years old. The impact of the restoration was most often (43%) assessed by tracking change over time rather than by comparing restored sites to unrestored and reference sites (12%), and few projects (30%) did both. Among the ways which restoration success was evaluated, vegetation structure (e.g., abundance, density, etc.) was assessed more often (152 papers) than vegetation processes (e.g., biomass accumulation, survival, etc.) (112 papers) and vegetation diversity (78 papers). Success was attributed to hydro-geomorphic factors in 63% of the projects. Future evaluations would benefit from incorporating emerging concepts in ecology such as functional traits to assess recovery of functionality, more rigorous experimental designs, enhanced comparisons among projects, longer term monitoring and reporting failure.


Assuntos
Recuperação e Remediação Ambiental , Plantas , Rios , Poluição da Água/prevenção & controle , Ecologia , Monitoramento Ambiental , Saúde Global , Humanos , Revisão por Pares
6.
Prog Biophys Mol Biol ; 96(1-3): 377-98, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17959231

RESUMO

The role of the Na+/Ca2+ exchanger (NCX) as the main pathway for Ca2+ extrusion from ventricular myocytes is well established. However, both the role of the Ca2+ entry mode of NCX in regulating local Ca2+ dynamics and the role of the Ca2+ exit mode during the majority of the physiological action potential (AP) are subjects of controversy. The functional significance of NCXs location in T-tubules and potential co-localization with ryanodine receptors was examined using a local Ca2+ control model of low computational cost. Our simulations demonstrate that under physiological conditions local Ca2+ and Na+ gradients are critical in calculating the driving force for NCX and hence in predicting the effect of NCX on AP. Under physiological conditions when 60% of NCXs are located on T-tubules, NCX may be transiently inward within the first 100 ms of an AP and then transiently outward during the AP plateau phase. Thus, during an AP NCX current (INCX) has three reversal points rather than just one. This provides a resolution to experimental observations where Ca2+ entry via NCX during an AP is inconsistent with the time at which INCX is thought to become inward. A more complex than previously believed dynamic regulation of INCX during AP under physiological conditions allows us to interpret apparently contradictory experimental data in a consistent conceptual framework. Our modelling results support the claim that NCX regulates the local control of Ca2+ and provide a powerful tool for future investigations of the control of sarcoplasmic reticulum (SR) Ca2+ release under pathological conditions.


Assuntos
Cálcio/metabolismo , Ventrículos do Coração/citologia , Miócitos Cardíacos/fisiologia , Trocador de Sódio e Cálcio/fisiologia , Sódio/metabolismo , Função Ventricular , Animais , Humanos
7.
Ann N Y Acad Sci ; 1099: 215-20, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17446461

RESUMO

Co-localization of Na+/Ca2+ exchangers (NCX) with ryanodine receptors (RyRs) is debated. We incorporate local NCX current in a biophysically detailed model of L-type Ca2+ channels (LCCs) and RyRs and study the effect of NCX on the regulation of Ca2+-induced Ca2+ release and the shape of the action potential. In canine ventricular cells, under pathological conditions, e.g., impaired LCCs, local NCXs become an enhancer of sarcoplasmic reticulum release. Under such conditions incorporation of local NCXs is critical to accurately capture mechanisms of excitation-contraction coupling.


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Modelos Teóricos
8.
Conserv Biol ; 14(6): 1744-1754, 2000 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-35701936

RESUMO

Changes in historical disturbance regimes have been shown to facilitate non-native plant invasions, but reinstatement of disturbance can be successful only if native colonizers are able to outcompete colonizing invasives. Reintroduction of flooding in the southwestern United States is being promoted as a means of reestablishing Populus deltoides subsp. wislizenii, but flooding can also promote establishment of an introduced, invasive species, Tamarix ramosissima. We investigated competition between Populus and Tamarix at the seedling stage to aid in characterizing the process by which Tamarix may invade and to determine the potential ability of Populus to establish itself with competitive pressure from Tamarix. We planted seedlings of Tamarix and Populus in five ratios at three densities for a total of 15 treatments. The growth response of each species was measured in terms of height, above-ground biomass, and tissue concentrations of nitrogen and phosphorous. These measurements across treatments were modeled as three-dimensional response surfaces. For both species, Populus density was more important than Tamarix density for determining growth response. Both species were negatively affected by increasing numbers of Populus seedlings. Due to the larger size of the native Populus, we predict that its superior competitive ability can lead to its dominance when conditions allow native establishment. Our results suggest that even in the presence of an invader that positively responds to disturbance, reestablishment of historical flooding regimes and post-flood hydrology can restore this ecosystem by promoting its dominant plant species.


RESUMEN: Los cambios en los regímenes históricos de perturbaciones han mostrado que facilitan invasiones de plantas no nativas; sin embargo, la reinstauración de la perturbación solo puede ser exitosa si los colonizadores nativos son capaces de competir y desplazar a las especies invasoras. La reintroducción de las inundaciones en el sudoeste de los Estados Unidos está siendo promovida como una forma de restablecer Populus deltoides subespecie wislizenii, pero las inundaciones pueden promover también el establecimiento de una especie invasora, Tamarix ramosissima. Investigamos la competencia entre Populus y Tamarix al estado de plántula para ayudar a caracterizar el proceso por el cual Tamarix puede invadir y para determinar la habilidad potencial de Populus para establecer presión competitiva contra Tamarix. Sembramos plántulas de Tamarix y Populus en 5 diferentes radios y densidades para un total de 15 tratamientos. La respuesta en crecimiento de cada especie fue medida en forma de altura, biomasa sobre el suelo y concentraciones de nitrógeno y fósforo en tejido. Estas mediciones en los tratamientos fueron modeladas en superficies de respuesta tridimensionales. La densidad de Populus fue más importante para la determinación del crecimiento que la densidad de Tamarix. Ambas especies estuvieron negativamente afectadas por el incremento en el número de plántulas de Populus. Debido al mayor tamaño de la nativa Populus, nosotros predecimos que su superior habilidad competitiva puede conducir a su dominación cuando las condiciones permiten el establecimiento nativo. Nuestros resultados sugieren que aún en presencia de una especie invasora que responde positivamente a las perturbaciones, el restablecimiento de los regímenes históricos de inundaciones y de la hidrología post-inundación puede restaurar este ecosistema al promover a sus especies de plantas dominantes.

9.
Artigo em Inglês | MEDLINE | ID: mdl-21096366

RESUMO

Cardiovascular diseases are the major cause of death in the developed countries. Identifying key cellular processes involved in generation of the electrical signal and in regulation of signal transduction pathways is essential for unraveling the underlying mechanisms of heart rhythm behavior. Computational cardiac models provide important insights into cardiovascular function and disease. Sensitivity analysis presents a key tool for exploring the large parameter space of such models, in order to determine the key factors determining and controlling the underlying physiological processes. We developed a new global sensitivity analysis tool which implements the Morris method, a global sensitivity screening algorithm, onto a Nimrod platform, which is a distributed resources software toolkit. The newly developed tool has been validated using the model of IP3-calcineurin signal transduction pathway model which has 30 parameters. The key driving factors of the IP3 transient behaviour have been calculated and confirmed to agree with previously published data. We next demonstrated the use of this method as an assessment tool for characterizing the structure of cardiac ionic models. In three latest human ventricular myocyte models, we examined the contribution of transmembrane currents to the shape of the electrical signal (i.e. on the action potential duration). The resulting profiles of the ionic current balance demonstrated the highly nonlinear nature of cardiac ionic models and identified key players in different models. Such profiling suggests new avenues for development of methodologies to predict drug action effects in cardiac cells.


Assuntos
Potenciais de Ação , Cardiomiopatia Hipertrófica/fisiopatologia , Sistema de Condução Cardíaco/fisiopatologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Modelos Cardiovasculares , Miócitos Cardíacos , Software , Algoritmos , Animais , Simulação por Computador , Humanos , Ativação do Canal Iônico , Sensibilidade e Especificidade , Transdução de Sinais
10.
Gen Comp Endocrinol ; 155(1): 126-40, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17499738

RESUMO

Pacific salmon employ a semelparous reproductive strategy where sexual maturation is followed by rapid senescence and death. Cortisol overproduction has been implicated as the central physiologic event responsible for the post-spawning demise of these fish. Cortisol homeostasis is regulated through the action of hormones of the hypothalamus-pituitary-interrenal (HPI) axis. These include corticotropin-releasing factor (CRF) and urotensin-I (UI). In the present study, masu salmon (Oncorhynchus masou) were assayed for changes in the levels CRF-I and UI mRNA transcripts by quantitative real-time PCR (qRT-PCR). These results were compared to plasma cortisol levels in juvenile, adult, and spawning masu salmon to identify specific regulatory factors that appear to be functionally associated with changes in cortisol levels. Intramuscular implantation of GnRH analog (GnRHa) capsules was also used to determine whether GnRH influences stress hormone levels. In both male and female masu salmon, spawning fish experienced a 5- to 7-fold increase in plasma cortisol levels relative to juvenile non-spawning salmon. Changes in CRF-I mRNA levels were characterized by 1-2 distinctive short-term surges in adult masu salmon. Conversely, seasonal changes in UI mRNA levels displayed broad and sustained increases during the pre-spawning and spawning periods. The increases in UI mRNA levels were positively correlated (R(2)=0.21 male and 0.26 female, p<0.0001) with levels of plasma cortisol in the pre-spawning and spawning periods. Despite the importance of GnRH in sexual maturation and reproduction, the administration of GnRHa to test animals failed to produce broad changes in CRF-I, UI or plasma cortisol levels. These findings suggest a more direct role for UI than for CRF-I in the regulation of cortisol levels in spawning Pacific salmon.


Assuntos
Hormônio Liberador da Corticotropina/genética , Hidrocortisona/metabolismo , Salmão/genética , Estações do Ano , Comportamento Sexual Animal/fisiologia , Urotensinas/genética , Animais , Sequência de Bases , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Clonagem Molecular , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/farmacologia , Hidrocortisona/sangue , Masculino , Modelos Biológicos , Dados de Sequência Molecular , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Salmão/sangue , Salmão/crescimento & desenvolvimento , Salmão/fisiologia , Homologia de Sequência do Ácido Nucleico , Urotensinas/metabolismo
11.
Am J Bot ; 90(3): 413-22, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21659134

RESUMO

Populus deltoides subsp. wislizinii (Salicaceae), a cottonwood native to the Middle Rio Grande of New Mexico, must potentially compete against exotic Tamarix ramosissima (Tamaricaceae) during establishment after flooding. We investigated competitive interactions between seedlings of Tamarix and Populus in two substrates representing field textures and declining (i.e., draw-down) or stagnant water tables. The experiment was performed using a full-additive series design and interpreted with response surface models for each species. As reflected in both aboveground mass and height, Populus suppressed aboveground growth of Tamarix across all treatments, whereas competitive effects of Tamarix against Populus could only be seen at low Populus densities. Clay substrates with draw-down stimulated the greatest growth and created the most intense competitive environment for both species. Tamarix was competitively suppressed in every substrate tested, with the weakest response in sand with no draw-down, where growth of Populus was poorest. These results suggest that stream flow management that promotes Populus establishment could also aid in controlling Tamarix invasion across a range of substrates.

12.
Oecologia ; 141(2): 353-62, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14669004

RESUMO

Resource availability is often characterized by mean annual amounts, while ignoring the spatial variation within habitats and the temporal variation within a year. Yet, temporal and spatial variation may be especially important for identifying the source of stress in low productivity environments such as deserts where resources are often pulsed and resource renewal events are separated by long periods of low resource availability. Therefore, the degree of stress will be determined in part by the length of time between recharge events. Here, we investigated the effect of timing and total amount of water application on two congeneric pairs, each with a population from a low (desert) and a high (Mediterranean) productivity habitat. As expected, highest survival and greatest growth were found at low or intermediate recharge intervals, and the magnitude of response to increases in total seasonal amounts was greater for Mediterranean species than desert species. The species that had greater survival switched in the hierarchy under high total water depending on interval length. These results demonstrate that temporal variation in resource availability can be as important as annual total amounts for plant performance and that response to temporal dynamics can vary between species. This has implications for community-level processes, as competitive hierarchies may switch based on resource dynamics rather than only total availability.


Assuntos
Meio Ambiente , Geraniaceae/fisiologia , Poaceae/fisiologia , Água/fisiologia , Análise de Variância , Clima Desértico , Geraniaceae/crescimento & desenvolvimento , Israel , Modelos Logísticos , Poaceae/crescimento & desenvolvimento , Reprodução/fisiologia , Especificidade da Espécie , Análise de Sobrevida , Fatores de Tempo
13.
Anal Chem ; 76(21): 6214-28, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15516112

RESUMO

Large-amplitude sinusoidal ac voltammetric techniques, when analyzed in the frequency domain using the Fourier transform-inverse Fourier transform sequence, produce the expected dc and fundamental harmonic ac responses in addition to very substantial second, third, and higher ac harmonics that arise from the presence of significant nonlinearity. A full numerical simulation of the process, Red right arrow over left arrow Ox + e(-), incorporates terms for the uncompensated resistance (R(u)), capacitance of the double layer (C(dl)), and slow electron transfer kinetics (in particular, the reversible potential (E degrees ), rate constant (k(0)), and charge transfer coefficient (alpha) from the Butler-Volmer model). Identification of intuitively obvious patterns of behavior (with characteristically different sensitivity regimes) in dc, fundamental, and higher harmonic terms enables simple protocols to be developed to estimate R(u), C(dl), E degrees , k(0), and alpha. Thus, if large-amplitude sinusoidal cyclic voltammograms are obtained for two concentrations of the reduced species, data obtained from analysis of the recovered signals provide initial estimates of parameters as follows: (a) the dc cyclic component provides an estimate of E degrees (because the R(u) and k(0) effects are minimized); (b) the fundamental harmonic provides an estimate of C(dl) (because it has a high capacitance-to-faradaic current ratio); and (c) the second harmonic provides an estimate of R(u), k(0), and alpha (because the C(dl) effect is minimized). Methods of refining the initial estimates are then implemented. As a check on the fidelity of the parameters (estimated on the basis of an essentially heuristic approach that solely utilizes the dc, fundamental, and second harmonic voltammograms), comparison of the predicted simulated and experimental third (or higher) harmonic voltammograms can be made to verify that agreement between theory and experiment has been achieved at a predetermined level. The use of the heuristic pattern recognition approach to evaluate the oxidation of ferrocene at a platinum electrode (a reversible process) in the very high resistance solvent dichloromethane (0.1 M Bu(4)NPF(6)) and the reduction of [Fe(CN(6))](3)(-) at a glassy carbon electrode (a quasi-reversible process) in much lower resistance but higher capacitance conditions found in aqueous (0.5 M KCl) media is described and verifies the inherent advantages of employing large-amplitude sinusoidal techniques in quantitative studies of electrode processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA