Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
1.
J Nat Prod ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990199

RESUMO

Fungal secondary metabolite (SM) biosynthetic gene clusters (BGCs) containing dimethylallyltryptophan synthases (DMATSs) produce structurally diverse prenylated indole alkaloids with wide-ranging activities that have vast potential as human therapeutics. To discover new natural products produced by DMATSs, we mined the Department of Energy Joint Genome Institute's MycoCosm database for DMATS-containing BGCs. We found a DMATS BGC in Aspergillus homomorphus CBS 101889, which also contains a nonribosomal peptide synthetase (NRPS). This BGC appeared to have a previously unreported combination of genes, which suggested the cluster might make novel SMs. We refactored this BGC with highly inducible promoters into the model fungus Aspergillus nidulans. The expression of this refactored BGC in A. nidulans resulted in the production of eight tryptophan-containing diketopiperazines, six of which are new to science. We have named them homomorphins A-F (2, 4-8). Perhaps even more intriguingly, to our knowledge, this is the first discovery of C4-prenylated tryptophan-containing diketopiperazines and their derivatives. In addition, the NRPS from this BGC is the first described that has the ability to promiscuously combine tryptophan with either of two different amino acids, in this case, l-valine or l-allo-isoleucine.

2.
Appl Environ Microbiol ; 89(5): e0209222, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37070981

RESUMO

Microcystis spp. produce diverse secondary metabolites within freshwater cyanobacterial harmful algal blooms (cyanoHABs) around the world. In addition to the biosynthetic gene clusters (BGCs) encoding known compounds, Microcystis genomes harbor numerous BGCs of unknown function, indicating a poorly understood chemical repertoire. While recent studies show that Microcystis produces several metabolites in the lab and field, little work has focused on analyzing the abundance and expression of its broader suite of BGCs during cyanoHAB events. Here, we use metagenomic and metatranscriptomic approaches to track the relative abundance of Microcystis BGCs and their transcripts throughout the 2014 western Lake Erie cyanoHAB. The results indicate the presence of several transcriptionally active BGCs that are predicted to synthesize both known and novel secondary metabolites. The abundance and expression of these BGCs shifted throughout the bloom, with transcript abundance levels correlating with temperature, nitrate, and phosphorus concentrations and the abundance of co-occurring predatory and competitive eukaryotic microorganisms, suggesting the importance of both abiotic and biotic controls in regulating expression. This work highlights the need for understanding the chemical ecology and potential risks to human and environmental health posed by secondary metabolites that are produced but often unmonitored. It also indicates the prospects for identifying pharmaceutical-like molecules from cyanoHAB-derived BGCs. IMPORTANCE Microcystis spp. dominate cyanobacterial harmful algal blooms (cyanoHABs) worldwide and pose significant threats to water quality through the production of secondary metabolites, many of which are toxic. While the toxicity and biochemistry of microcystins and several other compounds have been studied, the broader suite of secondary metabolites produced by Microcystis remains poorly understood, leaving gaps in our understanding of their impacts on human and ecosystem health. We used community DNA and RNA sequences to track the diversity of genes encoding synthesis of secondary metabolites in natural Microcystis populations and assess patterns of transcription in western Lake Erie cyanoHABs. Our results reveal the presence of both known gene clusters that encode toxic secondary metabolites as well as novel ones that may encode cryptic compounds. This research highlights the need for targeted studies of the secondary metabolite diversity in western Lake Erie, a vital freshwater source to the United States and Canada.


Assuntos
Cianobactérias , Microcystis , Humanos , Microcystis/genética , Lagos/microbiologia , Ecossistema , Cianobactérias/genética , Proliferação Nociva de Algas , Família Multigênica
3.
Nucleic Acids Res ; 49(16): 9560-9573, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417608

RESUMO

Macrolides have been effective clinical antibiotics for over 70 years. They inhibit protein biosynthesis in bacterial pathogens by narrowing the nascent protein exit tunnel in the ribosome. The macrolide class of natural products consist of a macrolactone ring linked to one or more sugar molecules. Most of the macrolides used currently are semi-synthetic erythromycin derivatives, composed of a 14- or 15-membered macrolactone ring. Rapidly emerging resistance in bacterial pathogens is among the most urgent global health challenges, which render many antibiotics ineffective, including next-generation macrolides. To address this threat and advance a longer-term plan for developing new antibiotics, we demonstrate how 16-membered macrolides overcome erythromycin resistance in clinically isolated Staphylococcus aureus strains. By determining the structures of complexes of the large ribosomal subunit of Deinococcus radiodurans (D50S) with these 16-membered selected macrolides, and performing anti-microbial studies, we identified resistance mechanisms they may overcome. This new information provides important insights toward the rational design of therapeutics that are effective against drug resistant human pathogens.


Assuntos
Macrolídeos/química , Micromonospora/química , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Eritromicina/química , Humanos , Macrolídeos/farmacologia , Testes de Sensibilidade Microbiana , Inibidores da Síntese de Proteínas/farmacologia , Ribossomos/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade
4.
Proc Natl Acad Sci U S A ; 117(38): 23835-23846, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900948

RESUMO

Nef is an HIV-encoded accessory protein that enhances pathogenicity by down-regulating major histocompatibility class I (MHC-I) expression to evade killing by cytotoxic T lymphocytes (CTLs). A potent Nef inhibitor that restores MHC-I is needed to promote immune-mediated clearance of HIV-infected cells. We discovered that the plecomacrolide family of natural products restored MHC-I to the surface of Nef-expressing primary cells with variable potency. Concanamycin A (CMA) counteracted Nef at subnanomolar concentrations that did not interfere with lysosomal acidification or degradation and were nontoxic in primary cell cultures. CMA specifically reversed Nef-mediated down-regulation of MHC-I, but not CD4, and cells treated with CMA showed reduced formation of the Nef:MHC-I:AP-1 complex required for MHC-I down-regulation. CMA restored expression of diverse allotypes of MHC-I in Nef-expressing cells and inhibited Nef alleles from divergent clades of HIV and simian immunodeficiency virus, including from primary patient isolates. Lastly, we found that restoration of MHC-I in HIV-infected cells was accompanied by enhanced CTL-mediated clearance of infected cells comparable to genetic deletion of Nef. Thus, we propose CMA as a lead compound for therapeutic inhibition of Nef to enhance immune-mediated clearance of HIV-infected cells.


Assuntos
HIV-1 , Interações Hospedeiro-Patógeno , Macrolídeos , Linfócitos T Citotóxicos , Células Cultivadas , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Macrolídeos/imunologia , Macrolídeos/farmacologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/virologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana
5.
Angew Chem Int Ed Engl ; 62(20): e202210254, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36610039

RESUMO

In the biosynthesis of the tryptophan-linked dimeric diketopiperazines (DKPs), cytochromes P450 selectively couple DKP monomers to generate a variety of intricate and isomeric frameworks. To determine the molecular basis for selectivity of these biocatalysts we obtained a high-resolution crystal structure of selective Csp2 -N bond forming dimerase, AspB. Overlay of the AspB structure onto C-C and C-N bond forming homolog NzeB revealed no significant structural variance to explain their divergent chemoselectivities. Molecular dynamics (MD) simulations identified a region of NzeB with increased conformational flexibility relative to AspB, and interchange of this region along with a single active site mutation led to a variant that catalyzes exclusive C-N bond formation. MD simulations also suggest that intermolecular C-C or C-N bond formation results from a change in mechanism, supported experimentally through use of a substrate mimic.


Assuntos
Dicetopiperazinas , Simulação de Dinâmica Molecular , Dicetopiperazinas/química , Conformação Molecular , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Isomerismo
6.
J Am Chem Soc ; 144(42): 19326-19336, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36223664

RESUMO

Prenyltransfer is an early-stage carbon-hydrogen bond (C-H) functionalization prevalent in the biosynthesis of a diverse array of biologically active bacterial, fungal, plant, and metazoan diketopiperazine (DKP) alkaloids. Toward the development of a unified strategy for biocatalytic construction of prenylated DKP indole alkaloids, we sought to identify and characterize a substrate-permissive C2 reverse prenyltransferase (PT). As the first tailoring event within the biosynthesis of cytotoxic notoamide metabolites, PT NotF catalyzes C2 reverse prenyltransfer of brevianamide F. Solving a crystal structure of NotF (in complex with native substrate and prenyl donor mimic dimethylallyl S-thiolodiphosphate (DMSPP)) revealed a large, solvent-exposed active site, intimating NotF may possess a significantly broad substrate scope. To assess the substrate selectivity of NotF, we synthesized a panel of 30 sterically and electronically differentiated tryptophanyl DKPs, the majority of which were selectively prenylated by NotF in synthetically useful conversions (2 to >99%). Quantitative representation of this substrate library and development of a descriptive statistical model provided insight into the molecular origins of NotF's substrate promiscuity. This approach enabled the identification of key substrate descriptors (electrophilicity, size, and flexibility) that govern the rate of NotF-catalyzed prenyltransfer, and the development of an "induced fit docking (IFD)-guided" engineering strategy for improved turnover of our largest substrates. We further demonstrated the utility of NotF in tandem with oxidative cyclization using flavin monooxygenase, BvnB. This one-pot, in vitro biocatalytic cascade enabled the first chemoenzymatic synthesis of the marine fungal natural product, (-)-eurotiumin A, in three steps and 60% overall yield.


Assuntos
Produtos Biológicos , Dimetilaliltranstransferase , Animais , Dimetilaliltranstransferase/química , Dicetopiperazinas , Ciência de Dados , Alcaloides Indólicos/química , Engenharia de Proteínas , Flavinas/metabolismo , Oxigenases de Função Mista/metabolismo , Solventes , Carbono , Especificidade por Substrato
7.
Appl Environ Microbiol ; 88(9): e0246421, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35438519

RESUMO

Cyanobacterial harmful algal blooms (cyanoHABs) degrade freshwater ecosystems globally. Microcystis aeruginosa often dominates cyanoHABs and produces microcystin (MC), a class of hepatotoxins that poses threats to human and animal health. Microcystin toxicity is influenced by distinct structural elements across a diversity of related molecules encoded by variant mcy operons. However, the composition and distribution of mcy operon variants in natural blooms remain poorly understood. Here, we characterized the variant composition of mcy genes in western Lake Erie Microcystis blooms from 2014 and 2018. Sampling was conducted across several spatial and temporal scales, including different bloom phases within 2014, extensive spatial coverage on the same day (2018), and frequent, autonomous sampling over a 2-week period (2018). Mapping of metagenomic and metatranscriptomic sequences to reference sequences revealed three Microcystis mcy genotypes: complete (all genes present [mcyA-J]), partial (truncated mcyA, complete mcyBC, and missing mcyD-J), and absent (no mcy genes). We also detected two different variants of mcyB that may influence the production of microcystin congeners. The relative abundance of these genotypes was correlated with pH and nitrate concentrations. Metatranscriptomic analysis revealed that partial operons were, at times, the most abundant genotype and expressed in situ, suggesting the potential biosynthesis of truncated products. Quantification of genetic divergence between genotypes suggests that the observed strains are the result of preexisting heterogeneity rather than de novo mutation during the sampling period. Overall, our results show that natural Microcystis populations contain several cooccurring mcy genotypes that dynamically shift in abundance spatiotemporally via strain succession and likely influence the observed diversity of the produced congeners. IMPORTANCE Cyanobacteria are responsible for producing microcystins (MCs), a class of potent and structurally diverse toxins, in freshwater systems around the world. While microcystins have been studied for over 50 years, the diversity of their chemical forms and how this variation is encoded at the genetic level remain poorly understood, especially within natural populations of cyanobacterial harmful algal blooms (cyanoHABs). Here, we leverage community DNA and RNA sequences to track shifts in mcy genes responsible for producing microcystin, uncovering the relative abundance, expression, and variation of these genes. We studied this phenomenon in western Lake Erie, which suffers annually from cyanoHAB events, with impacts on drinking water, recreation, tourism, and commercial fishing.


Assuntos
Cianobactérias , Microcystis , Cianobactérias/genética , Ecossistema , Genótipo , Lagos/microbiologia , Microcistinas/genética , Microcistinas/metabolismo , Microcystis/genética , Microcystis/metabolismo , Óperon
8.
J Ind Microbiol Biotechnol ; 49(1)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34543433

RESUMO

MycG is a multifunctional P450 monooxygenase that catalyzes sequential hydroxylation and epoxidation or a single epoxidation in mycinamicin biosynthesis. In the mycinamicin-producing strain Micromonospora griseorubida A11725, very low-level accumulation of mycinamicin V generated by the initial C-14 allylic hydroxylation of MycG is observed due to its subsequent epoxidation to generate mycinamicin II, the terminal metabolite in this pathway. Herein, we investigated whether MycG can be engineered for production of the mycinamicin II intermediate as the predominant metabolite. Thus, mycG was subject to random mutagenesis and screening was conducted in Escherichia coli whole-cell assays. This enabled efficient identification of amino acid residues involved in reaction profile alterations, which included MycG R111Q/V358L, W44R, and V135G/E355K with enhanced monohydroxylation to accumulate mycinamicin V. The MycG V135G/E355K mutant generated 40-fold higher levels of mycinamicin V compared to wild-type M. griseorubida A11725. In addition, the E355K mutation showed improved ability to catalyze sequential hydroxylation and epoxidation with minimal mono-epoxidation product mycinamicin I compared to the wild-type enzyme. These approaches demonstrate the ability to selectively coordinate the catalytic activity of multifunctional P450s and efficiently produce the desired compounds.


Assuntos
Sistema Enzimático do Citocromo P-450 , Macrolídeos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Hidroxilação , Oxirredução , Biossíntese Peptídica
9.
Proc Natl Acad Sci U S A ; 116(32): 15895-15900, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31337679

RESUMO

G protein-coupled receptor (GPCR) kinases (GRKs) are responsible for initiating desensitization of activated GPCRs. GRK5 is potently inhibited by the calcium-sensing protein calmodulin (CaM), which leads to nuclear translocation of GRK5 and promotion of cardiac hypertrophy. Herein, we report the architecture of the Ca2+·CaM-GRK5 complex determined by small-angle X-ray scattering and negative-stain electron microscopy. Ca2+·CaM binds primarily to the small lobe of the kinase domain of GRK5 near elements critical for receptor interaction and membrane association, thereby inhibiting receptor phosphorylation while activating the kinase for phosphorylation of soluble substrates. To define the role of each lobe of Ca2+·CaM, we utilized the natural product malbrancheamide as a chemical probe to show that the C-terminal lobe of Ca2+·CaM regulates membrane binding while the N-terminal lobe regulates receptor phosphorylation and kinase domain activation. In cells, malbrancheamide attenuated GRK5 nuclear translocation and effectively blocked the hypertrophic response, demonstrating the utility of this natural product and its derivatives in probing Ca2+·CaM-dependent hypertrophy.


Assuntos
Produtos Biológicos/química , Calmodulina/metabolismo , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Cálcio/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Ativação Enzimática/efeitos dos fármacos , Quinase 5 de Receptor Acoplado a Proteína G/química , Hipertrofia , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacologia , Modelos Biológicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação/efeitos dos fármacos , Domínios Proteicos , Transporte Proteico/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos
10.
Nat Prod Rep ; 38(9): 1567-1588, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34032254

RESUMO

Covering: 1984 up to the end of 2020Hapalindoles, fischerindoles, ambiguines and welwitindolinones are all members of a class of indole alkaloid natural products that have been isolated from the Stigonematales order of cyanobacteria. These compounds possess a polycyclic ring system, unique functional groups and various stereo- and regiochemical isomers. Since their initial isolation in 1984, they have been explored as potential therapeutics due to their wide variety of biological activities. Although numerous groups have pursued total syntheses of these densely functionalized structures, hapalindole biosynthesis has only recently been unveiled. Several groups have uncovered a wide range of novel enzymes that catalyze formation and tailoring of the hapalindole-type metabolites. In this article, we provide an overview of these natural products, their biological activities, highlight general synthetic routes, and provide an extensive review on the surprising biosynthetic processes leading to these structurally diverse metabolites.


Assuntos
Cianobactérias/metabolismo , Alcaloides Indólicos/metabolismo , Produtos Biológicos/metabolismo , Alcaloides Indólicos/farmacologia
11.
Bioinformatics ; 36(3): 942-944, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504190

RESUMO

SUMMARY: DDAP is a tool for predicting the biosynthetic pathways of the products of type I modular polyketide synthase (PKS) with the focus on providing a more accurate prediction of the ordering of proteins and substrates in the pathway. In this study, the module docking domain (DD) affinity prediction performance on a hold-out testing dataset reached 0.88 as measured by the area under the receiver operating characteristic (ROC) curve (AUC); the Mean Reciprocal Ranking (MRR) of pathway prediction reached 0.67. DDAP has advantages compared to previous informatics tools in several aspects: (i) it does not rely on large databases, making it a high efficiency tool, (ii) the predicted DD affinity is represented by a probability (0-1), which is more intuitive than raw scores, (iii) its performance is competitive compared to the current popular rule-based algorithm. DDAP is so far the first machine learning based algorithm for type I PKS DD affinity and pathway prediction. We also established the first database of type I modular PKSs, featuring a comprehensive annotation of available docking domains information in bacterial biosynthetic pathways. AVAILABILITY AND IMPLEMENTATION: The DDAP database is available at https://tylii.github.io/ddap. The prediction algorithm DDAP is freely available on GitHub (https://github.com/tylii/ddap) and released under the MIT license. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Vias Biossintéticas , Policetídeo Sintases , Algoritmos , Bactérias
12.
Appl Microbiol Biotechnol ; 105(7): 2647-2661, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33710358

RESUMO

Cytochrome P450 enzymes (P450s) are one of the major factors responsible for the diversity of metabolites produced through many biosynthetic and biodegradative processes in actinomycetes. P450s typically catalyze a single oxidative modification; however, several P450s have been identified with the unique ability to iteratively oxidize the same-site of the substrate. These P450s are capable of forming diverse compounds that affect biological processes, including alcohols, ketones, aldehydes, and carboxylic acids. Although further structural and functional studies are needed to elucidate the mechanisms that allow multistep oxidative modification, recent studies have revealed the enzymatic properties and reaction mechanisms of these P450s. This mini-review covers the current knowledge of P450s that catalyze the multistep oxidation reactions and contribute to the production of a wide variety of metabolites by selected actinomycete strains, along with insights into their application and utility. Understanding the characteristics of these remarkable enzymes will facilitate their utilization in biotechnological applications to create biologically active and other high-value compounds. KEY POINTS: • The multistep oxidation by P450s plays a key role in the diversity of metabolites. • The mechanisms that enable P450s to catalyze iterative oxidation remains unknown. • The effective use of P450s that iteratively oxidize the same-site is discussed.


Assuntos
Actinobacteria , Actinobacteria/metabolismo , Biotecnologia , Catálise , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução
13.
J Biol Chem ; 294(44): 15947-15961, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31488542

RESUMO

Cytochromes P450 (P450s) are nature's catalysts of choice for performing demanding and physiologically vital oxidation reactions. Biochemical characterization of these enzymes over the past decades has provided detailed mechanistic insight and highlighted the diversity of substrates P450s accommodate and the spectrum of oxidative transformations they catalyze. Previously, we discovered that the bacterial P450 MycCI from the mycinamicin biosynthetic pathway in Micromonospora griseorubida possesses an unusually broad substrate scope, whereas the homologous P450 from tylosin-producing Streptomyces fradiae (TylHI) exhibits a high degree of specificity for its native substrate. Here, using biochemical, structural, and computational approaches, we aimed to understand the molecular basis for the disparate reactivity profiles of these two P450s. Turnover and equilibrium binding experiments with substrate analogs revealed that TylHI strictly prefers 16-membered ring macrolides bearing the deoxyamino sugar mycaminose. To help rationalize these results, we solved the X-ray crystal structure of TylHI in complex with its native substrate at 1.99-Å resolution and assayed several site-directed mutants. We also conducted molecular dynamics simulations of TylHI and MycCI and biochemically characterized a third P450 homolog from the chalcomycin biosynthetic pathway in Streptomyces bikiniensis These studies provided a basis for constructing P450 chimeras to gain further insight into the features dictating the differences in reaction profile among these structurally and functionally related enzymes, ultimately unveiling the central roles of key loop regions in influencing substrate binding and turnover. Our work highlights the complex nature of P450/substrate interactions and raises interesting questions regarding the evolution of functional diversity among biosynthetic enzymes.


Assuntos
Proteínas de Bactérias/química , Sistema Enzimático do Citocromo P-450/química , Tilosina/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Streptomyces/enzimologia , Especificidade por Substrato
14.
J Am Chem Soc ; 142(42): 17981-17988, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33030347

RESUMO

MycG is a cytochrome P450 that performs two sequential oxidation reactions on the 16-membered ring macrolide M-IV. The enzyme evolved to oxidize M-IV preferentially over M-III and M-VI, which differ only by the presence of methoxy vs free hydroxyl groups on one of the macrolide sugar moieties. We utilized a two-pronged computational approach to study both the chemoselective reactivity and substrate specificity of MycG. Density functional theory computations determined that epoxidation of the substrate hampers its ability to undergo C-H abstraction, primarily due to a loss of hyperconjugation in the transition state. Metadynamics and molecular dynamics simulations revealed a hydrophobic sugar-binding pocket that is responsible for substrate recognition/specificity and was not apparent in crystal structures of the enzyme/substrate complex. Computational results also led to the identification of other interactions between the enzyme and its substrates that had not previously been observed in the cocrystal structures. Site-directed mutagenesis was then employed to test the effects of mutations hypothesized to broaden the substrate scope and alter the product profile of MycG. The results of these experiments validated this complementary effort to engineer MycG variants with improved catalytic activity toward earlier stage mycinamicin substrates.


Assuntos
Antibacterianos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Macrolídeos/metabolismo , Simulação de Dinâmica Molecular , Engenharia de Proteínas , Antibacterianos/química , Sistema Enzimático do Citocromo P-450/química , Macrolídeos/química , Conformação Molecular , Oxirredução
15.
J Am Chem Soc ; 142(41): 17413-17424, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32786740

RESUMO

The dimeric diketopiperazine (DKPs) alkaloids are a diverse family of natural products (NPs) whose unique structural architectures and biological activities have inspired the development of new synthetic methodologies to access these molecules. However, catalyst-controlled methods that enable the selective formation of constitutional and stereoisomeric dimers from a single monomer are lacking. To resolve this long-standing synthetic challenge, we sought to characterize the biosynthetic enzymes that assemble these NPs for application in biocatalytic syntheses. Genome mining enabled identification of the cytochrome P450, NzeB (Streptomyces sp. NRRL F-5053), which catalyzes both intermolecular carbon-carbon (C-C) and carbon-nitrogen (C-N) bond formation. To identify the molecular basis for the flexible site-selectivity, stereoselectivity, and chemoselectivity of NzeB, we obtained high-resolution crystal structures (1.5 Å) of the protein in complex with native and non-native substrates. This, to our knowledge, represents the first crystal structure of an oxidase catalyzing direct, intermolecular C-H amination. Site-directed mutagenesis was utilized to assess the role individual active-site residues play in guiding selective DKP dimerization. Finally, computational approaches were employed to evaluate plausible mechanisms regarding NzeB function and its ability to catalyze both C-C and C-N bond formation. These results provide a structural and computational rationale for the catalytic versatility of NzeB, as well as new insights into variables that control selectivity of CYP450 diketopiperazine dimerases.


Assuntos
Alcaloides/química , Produtos Biológicos/química , Sistema Enzimático do Citocromo P-450/metabolismo , Dicetopiperazinas/química , Aminação , Biocatálise , Carbono/química , Dimerização , Modelos Moleculares , Conformação Molecular , Mutagênese Sítio-Dirigida , Nitrogênio/química , Streptomyces/enzimologia , Especificidade por Substrato
16.
J Am Chem Soc ; 142(5): 2244-2252, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31904957

RESUMO

The paraherquamides are potent anthelmintic natural products with complex heptacyclic scaffolds. One key feature of these molecules is the spiro-oxindole moiety that lends a strained three-dimensional architecture to these structures. The flavin monooxygenase PhqK was found to catalyze spirocycle formation through two parallel pathways in the biosynthesis of paraherquamides A and G. Two new paraherquamides (K and L) were isolated from a ΔphqK strain of Penicillium simplicissimum, and subsequent enzymatic reactions with these compounds generated two additional metabolites, paraherquamides M and N. Crystal structures of PhqK in complex with various substrates provided a foundation for mechanistic analyses and computational studies. While it is evident that PhqK can react with various substrates, reaction kinetics and molecular dynamics simulations indicated that the dioxepin-containing paraherquamide L is the favored substrate. Through this effort, we have elucidated a key step in the biosynthesis of the paraherquamides and provided a rationale for the selective spirocyclization of these powerful anthelmintic agents.

17.
Chembiochem ; 21(17): 2449-2454, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32246875

RESUMO

The fungal indole alkaloids are a unique class of complex molecules that have a characteristic bicyclo[2.2.2]diazaoctane ring and frequently contain a spiro-oxindole moiety. While various strains produce these compounds, an intriguing case involves the formation of individual antipodes by two unique species of fungi in the generation of the potent anticancer agents (+)- and (-)-notoamide A. NotI and NotI' have been characterized as flavin-dependent monooxygenases that catalyze epoxidation and semi-pinacol rearrangement to form the spiro-oxindole center within these molecules. This work elucidates a key step in the biosynthesis of the notoamides and provides an evolutionary hypothesis regarding a common ancestor for production of enantiopure notoamides.


Assuntos
Flavinas/metabolismo , Alcaloides Indólicos/metabolismo , Oxigenases de Função Mista/metabolismo , Oxindóis/metabolismo , Compostos de Espiro/metabolismo , Flavinas/química , Alcaloides Indólicos/química , Oxigenases de Função Mista/química , Conformação Molecular , Oxindóis/química , Compostos de Espiro/química , Estereoisomerismo
18.
Nat Chem Biol ; 14(4): 345-351, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29531360

RESUMO

Hapalindole alkaloids are a structurally diverse class of cyanobacterial natural products defined by their varied polycyclic ring systems and diverse biological activities. These complex metabolites are generated from a common biosynthetic intermediate by the Stig cyclases in three mechanistic steps: a rare Cope rearrangement, 6-exo-trig cyclization, and electrophilic aromatic substitution. Here we report the structure of HpiC1, a Stig cyclase that catalyzes the formation of 12-epi-hapalindole U in vitro. The 1.5-Å structure revealed a dimeric assembly with two calcium ions per monomer and with the active sites located at the distal ends of the protein dimer. Mutational analysis and computational methods uncovered key residues for an acid-catalyzed [3,3]-sigmatropic rearrangement, as well as specific determinants that control the position of terminal electrophilic aromatic substitution, leading to a switch from hapalindole to fischerindole alkaloids.


Assuntos
Alcaloides/química , Cianobactérias/enzimologia , Indóis/química , Cálcio/química , Catálise , Domínio Catalítico , Clonagem Molecular , Ciclização , Análise Mutacional de DNA , Dimerização , Alcaloides Indólicos/química , Íons , Conformação Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Teoria Quântica , Proteínas Recombinantes/química , Estereoisomerismo
19.
J Org Chem ; 85(5): 3812-3823, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31970985

RESUMO

New structural classes of antibiotics are rare, structurally novel broad-spectrum antibiotics exceptionally so. The recently discovered baulamycins constitute a remarkable example of these highly prized compounds and, as such, have attracted considerable attention in the form of both synthetic efforts and biological studies. For the first time, we report a gram-scale preparation of the common carbon framework of the baulamycin family, as well as the total synthesis of its most potent member, baulamycin A. Our approach employs highly stereoselective, catalyst-controlled asymmetric conjugate additions to thioesters to set key stereocenters, as well as the first reported use of "dry ozonolysis" to reveal a masked carboxylic acid in the total synthesis of a natural product.


Assuntos
Álcoois Graxos , Resorcinóis , Estrutura Molecular , Estereoisomerismo
20.
Nature ; 510(7506): 512-7, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24965652

RESUMO

Polyketide natural products constitute a broad class of compounds with diverse structural features and biological activities. Their biosynthetic machinery, represented by type I polyketide synthases (PKSs), has an architecture in which successive modules catalyse two-carbon linear extensions and keto-group processing reactions on intermediates covalently tethered to carrier domains. Here we used electron cryo-microscopy to determine sub-nanometre-resolution three-dimensional reconstructions of a full-length PKS module from the bacterium Streptomyces venezuelae that revealed an unexpectedly different architecture compared to the homologous dimeric mammalian fatty acid synthase. A single reaction chamber provides access to all catalytic sites for the intramodule carrier domain. In contrast, the carrier from the preceding module uses a separate entrance outside the reaction chamber to deliver the upstream polyketide intermediate for subsequent extension and modification. This study reveals for the first time, to our knowledge, the structural basis for both intramodule and intermodule substrate transfer in polyketide synthases, and establishes a new model for molecular dissection of these multifunctional enzyme systems.


Assuntos
Policetídeo Sintases/química , Policetídeo Sintases/ultraestrutura , Streptomyces/enzimologia , Biocatálise , Domínio Catalítico , Microscopia Crioeletrônica , Ácido Graxo Sintases/química , Macrolídeos/metabolismo , Modelos Moleculares , Policetídeo Sintases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA