Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Immunol ; 24(1): 52, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38082384

RESUMO

BACKGROUND: Cellular states of different immune cells can affect the activity of the whole immune microenvironment. METHODS: Here, leveraging reference profiles of microenvironment cell states that were constructed based on single-cell RNA-seq data of melanoma, we dissected the composition of microenvironment cell states across 463 skin cutaneous melanoma (SKCM) bulk samples through CIBERSORT-based deconvolution of gene expression profiles and revealed high heterogeneity of their distribution. Correspondence analysis on the estimated cellular fractions of melanoma bulk samples was performed to identify immune phenotypes. Based on the publicly available clinical survival and therapy data, we analyzed the relationship between immune phenotypes and clinical outcomes of melanoma. RESULTS: By analysis of the relationships among those cell states, we further identified three distinct tumor microenvironment immune phenotypes: "immune hot/active", "immune cold-suppressive" and "immune cold-exhausted". They were characterized by markedly different patterns of cell states: most notably the CD8 T Cytotoxic state, CD8 T Mixed state, B non-regulatory state and cancer-associated fibroblasts (CAFs), depicting distinct types of antitumor immune response (or immune activity). These phenotypes had prognostic significance for progression-free survival and implications in response to immune therapy in an independent cohort of anti-PD1 treated melanoma patients. CONCLUSIONS: The proposed strategy of leveraging single-cell data to dissect the composition of microenvironment cell states in individual bulk tumors can also extend to other cancer types, and our results highlight the importance of microenvironment cell states for the understanding of tumor immunity.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Neoplasias Cutâneas/genética , Perfilação da Expressão Gênica , Terapia de Imunossupressão , Fenótipo , Microambiente Tumoral , Transcriptoma , Prognóstico
2.
Nucleic Acids Res ; 47(D1): D900-D908, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30329142

RESUMO

High functional heterogeneity of cancer cells poses a major challenge for cancer research. Single-cell sequencing technology provides an unprecedented opportunity to decipher diverse functional states of cancer cells at single-cell resolution, and cancer scRNA-seq datasets have been largely accumulated. This emphasizes the urgent need to build a dedicated resource to decode the functional states of cancer single cells. Here, we developed CancerSEA (http://biocc.hrbmu.edu.cn/CancerSEA/ or http://202.97.205.69/CancerSEA/), the first dedicated database that aims to comprehensively explore distinct functional states of cancer cells at the single-cell level. CancerSEA portrays a cancer single-cell functional state atlas, involving 14 functional states (including stemness, invasion, metastasis, proliferation, EMT, angiogenesis, apoptosis, cell cycle, differentiation, DNA damage, DNA repair, hypoxia, inflammation and quiescence) of 41 900 cancer single cells from 25 cancer types. It allows querying which functional states are associated with the gene (or gene list) of interest in different cancers. CancerSEA also provides functional state-associated PCG/lncRNA repertoires across all cancers, in specific cancers, and in individual cancer single-cell datasets. In summary, CancerSEA provides a user-friendly interface for comprehensively searching, browsing, visualizing and downloading functional state activity profiles of tens of thousands of cancer single cells and the corresponding PCGs/lncRNAs expression profiles.


Assuntos
Bases de Dados Genéticas , Neoplasias/genética , RNA-Seq , Análise de Célula Única , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas/genética , Proteínas/metabolismo , RNA Longo não Codificante/metabolismo
3.
Nucleic Acids Res ; 47(D1): D721-D728, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30289549

RESUMO

One of the most fundamental questions in biology is what types of cells form different tissues and organs in a functionally coordinated fashion. Larger-scale single-cell sequencing and biology experiment studies are now rapidly opening up new ways to track this question by revealing substantial cell markers for distinguishing different cell types in tissues. Here, we developed the CellMarker database (http://biocc.hrbmu.edu.cn/CellMarker/ or http://bio-bigdata.hrbmu.edu.cn/CellMarker/), aiming to provide a comprehensive and accurate resource of cell markers for various cell types in tissues of human and mouse. By manually curating over 100 000 published papers, 4124 entries including the cell marker information, tissue type, cell type, cancer information and source, were recorded. At last, 13 605 cell markers of 467 cell types in 158 human tissues/sub-tissues and 9148 cell makers of 389 cell types in 81 mouse tissues/sub-tissues were collected and deposited in CellMarker. CellMarker provides a user-friendly interface for browsing, searching and downloading markers of diverse cell types of different tissues. Furthermore, a summarized marker prevalence in each cell type is graphically and intuitively presented through a vivid statistical graph. We believe that CellMarker is a comprehensive and valuable resource for cell researches in precisely identifying and characterizing cells, especially at the single-cell level.


Assuntos
Bases de Dados Genéticas , Análise de Sequência/métodos , Análise de Célula Única/métodos , Software , Animais , Humanos , Camundongos , Análise de Sequência/normas , Análise de Célula Única/normas
4.
Mol Ther Nucleic Acids ; 35(1): 102100, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38222302

RESUMO

Epigenetic regulation contributes to the dysregulation of gene expression involved in cancer biology. Nevertheless, the roles of epigenetic regulators (ERs) in tumor immunity and immune response remain basically unclear. Here, we developed the epigenetic regulator in immunology (EPRIM) approach to identify immune-related ERs and comprehensively dissected the ER regulation in tumor immune response across 33 cancers. The identified immune-related ERs were related to immune infiltration and could stratify cancer patients into two risk groups in multiple independent datasets. These patient groups were characterized by distinct immune functions, immune infiltrates, driver gene mutations, and prognoses. Furthermore, we constructed an immune ER-based signature and highlighted its potential utility in predicting clinical benefit from immunotherapy and selecting therapeutic agents. Taken together, our identification and evaluation of immune-related ERs highlight the usefulness of EPRIM for the understanding of ERs in immune regulation and the clinical relevance in evaluation of cancer patient prognosis and response to immune checkpoint blockade therapy.

5.
Epigenetics ; 18(1): 2139067, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36305095

RESUMO

Epigenetic machinery contributes to gene regulation in eukaryotic species. However, the machinery including more than 600 epigenetic regulator (ER) genes responsible for reading, writing, and erasing histone modifications and DNA modifications remains largely uncharacterized across species. We compile a comprehensive list of ERs based on an evolutionary analysis across 23 species, which is the most comprehensive ER list in various species until recently. We further perform comparative transcriptomic analyses across different tissues in humans, mice, as well as other amniote species. We observe a consistent tissue-of-origin expression specificity pattern of duplicated ER genes across species and suggest links between expression specificity and ER gene evolution as well as ER function. Additional analyses further suggest that ER duplication can generate tissue-specific ER genes with the same epigenetic substrates, which may be closely related to their regulatory specificity in tissue development. Our work can serve as a foundation to better comprehend the tissue-specific expression patterns of ER genes from an evolutionary perspective and also the functional implications of ERs in tissue-specific epigenetic regulation.


Assuntos
Metilação de DNA , Epigênese Genética , Humanos , Animais , Camundongos , Regulação da Expressão Gênica , Perfilação da Expressão Gênica , Transcriptoma , Evolução Molecular
6.
EBioMedicine ; 35: 369-380, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30177244

RESUMO

Characterizing functions of long noncoding RNAs (lncRNAs) remains a major challenge, mostly due to the lack of lncRNA-involved regulatory relationships. A wide array of genome-wide expression profiles generated by gene perturbation have been widely used to capture causal links between perturbed genes and response genes. Through annotating >600 gene perturbation profiles, over 354,000 causal relationships between perturbed genes and lncRNAs were identified. This large-scale resource of causal relations inspired us to develop a novel computational approach LnCAR for inferring lncRNAs' functions, which showed a higher accuracy than the co-expression based approach. By application of LnCAR to the cancer hallmark processes, we identified 38 lncRNAs involved in distinct carcinogenic processes. The "activating invasion & metastasis" related lncRNAs were strongly associated with metastatic progression in various cancer types and could act as a predictor of cancer metastasis. Meanwhile, the "evading immune destruction" related lncRNAs showed significant associations with immune infiltration of various immune cells and, importantly, can predict response to anti-PD-1 immunotherapy, suggesting their potential roles as biomarkers for immune therapy. Taken together, our approach provides a novel way to systematically reveal functions of lncRNAs, which will be helpful for further experimental exploration and clinical translational research of lncRNAs.


Assuntos
Perfilação da Expressão Gênica , RNA Longo não Codificante/genética , Ciclo Celular/genética , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Humanos , Imunidade/genética , Imunoterapia , Metástase Neoplásica , Neoplasias/genética , Fases de Leitura Aberta/genética
7.
Database (Oxford) ; 20182018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788225

RESUMO

Long non-coding RNAs (lncRNAs) constitute an important layer of chromatin regulation that contributes to various biological processes and diseases. By interacting with chromatin, many lncRNAs can regulate that state of chromatin by recruiting chromatin-modifying complexes and thus control large-scale gene expression programs. However, the available information on interactions between lncRNAs and chromatin is hidden in a large amount of dispersed literature and has not been extensively collected. We established the LnChrom database, a manually curated resource of experimentally validated lncRNA-chromatin interactions. The current release of LnChrom includes 382 743 interactions in human and mouse. We also manually collected detailed metadata for each interaction pair, including those of chromatin modifying factors, epigenetic marks and disease associations. LnChrom provides a user-friendly interface to facilitate browsing, searching and retrieving of lncRNA-chromatin interaction data. Additionally, a large amount of multi-omics data was integrated into LnChrom to aid in characterizing the effects of lncRNA-chromatin interactions on epigenetic modifications and transcriptional expression. We believe that LnChrom is a timely and valuable resource that can greatly motivate mechanistic research into lncRNAs.Database URL: http://biocc.hrbmu.edu.cn/LnChrom/.


Assuntos
Cromatina , Bases de Dados de Ácidos Nucleicos , Epigênese Genética , Metadados , RNA Longo não Codificante , Transcrição Gênica , Animais , Cromatina/genética , Cromatina/metabolismo , Humanos , Camundongos , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/genética
8.
Oncotarget ; 8(65): 109522-109535, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29312626

RESUMO

Increasing evidence suggests that the abnormality of microRNAs (miRNAs) and their downstream targets is frequently implicated in the pathogenesis of human cancers, however, the clinical benefit of causal miRNA-target interactions has been seldom studied. Here, we proposed a computational method to optimize prognosis-related key miRNA-target interactions by combining transcriptome and clinical data from thousands of TCGA tumors across 16 cancer types. We obtained a total of 1,956 prognosis-related key miRNA-target interactions between 112 miRNAs and 1,443 their targets. Interestingly, these key target genes are specifically involved in tumor progression-related functions, such as 'cell adhesion' and 'cell migration'. Furthermore, they are most significantly correlated with 'tissue invasion and metastasis', a hallmark of metastasis, in ten distinct types of cancer through the hallmark analysis. These results implicated that the prognosis-related key miRNA-target interactions were highly associated with cancer metastasis. Finally, we observed that the combination of these key miRNA-target interactions allowed to distinguish patients with good prognosis from those with poor prognosis both in most TCGA cancer types and independent validation sets, highlighting their roles in cancer metastasis. We provided a user-friendly database named miRNATarget (freely available at http://biocc.hrbmu.edu.cn/miRNATar/), which provides an overview of the prognosis-related key miRNA-target interactions across 16 cancer types.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA