Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Ecotoxicol Environ Saf ; 272: 116089, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354436

RESUMO

Exposure to cadmium (Cd), a toxic heavy metal classified as an environmental endocrine disruptor, can exert significant toxicity in both animals and humans. However, the potential effects of Cd exposure on socioemotional behaviors are still poorly understood, as are the underlying mechanisms. In the present study, employing a series of behavioral tests as well as 16 S rRNA sequencing analysis, we investigated the long-term effects of Cd exposure on socioemotional behaviors and their associated mechanisms in mice based on the brain-gut interaction theory. The results showed that postweaning exposure to Cd reduced the ability to resist depression, decreased social interaction, subtly altered sexual preference, and changed the composition of the gut microbiota in male mice during adolescence. These findings provided direct evidence for the deleterious effects of exposure to Cd in the postweaning period on socioemotional behaviors later in adolescence, and suggested that these effects of Cd exposure may be linked to changes in the gut microbiota.


Assuntos
Cádmio , Microbioma Gastrointestinal , Humanos , Masculino , Animais , Camundongos , Adolescente , Cádmio/toxicidade
2.
J Neurochem ; 163(2): 133-148, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35892177

RESUMO

Depression is a global health problem, and there is a pressing need for a better understanding of its pathogenesis. Semaphorin 3B (Sema 3B) is an important axon guidance molecule that is primarily expressed in neurons and contributes to synaptic plasticity. Our previous studies using a high-throughput microarray assay suggested that Sema 3B expression was tremendously decreased during the development of depression, but the specific role and mechanisms of Sema 3B in depression are still unknown. Herein, we report that levels of Sema 3B protein are decreased in the hippocampus and serum of chronic mild stress (CMS)-treated mice. Increasing the levels of Sema 3B, either by injecting AAV-Sema 3B into the hippocampus or by injecting recombinant Sema 3B protein into the lateral ventricles, alleviated CMS-induced depression-like behaviours and enhanced the resistance to acute stress by increasing dendritic spine density in hippocampal neurons. In contrast, interfering with the function of Sema 3B by injecting anti-Sema 3B antibody into the lateral ventricles decreased the resistance to acute stress. In vitro, corticosterone (CORT) treatment decreased the survival rate and protein levels of Sema 3B and synapse-associated proteins in HT22 cells. Overexpression of Sema 3B improved the decreased survival rate caused by CORT by inhibiting apoptosis and increasing levels of synaptic-associated proteins, and knockdown of Sema 3B reduces the cellular resistance to CORT and the levels of synapse-associated proteins. These findings represent the first evidence for the neuroprotective mechanism of Sema 3B against stresses, suggesting that Sema 3B could be a promising novel target for the prevention and treatment of depression.


Assuntos
Depressão , Semaforinas , Animais , Camundongos , Apoptose , Corticosterona , Depressão/tratamento farmacológico , Hipocampo , Plasticidade Neuronal/fisiologia , Proteínas , Semaforinas/fisiologia , Comportamento Animal
3.
Toxicol Appl Pharmacol ; 449: 116131, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35718130

RESUMO

We recently reported that exposure to triclosan (TCS), a broad-spectrum antibacterial agent, affects social behaviors in adult mice, however, the long-lasting effects of TCS exposure during early life on social behaviors are still elusive. The present study aimed to investigate the long-lasting impacts of adding TCS to the maternal drinking water during lactation on the social behaviors of adult mouse offspring and to explore the potential mechanism underlying these effects. The behavioral results showed that TCS exposure decreased body weight, increased depression-like behavior and decreased social dominance in both male and female offspring, as well as increased anxiety-like behavior and bedding preference in female offspring. In addition, enzyme-linked immunosorbent assay (ELISA) indicated that TCS exposure increased peripheral proinflammatory cytokine levels, altered serum oxytocin (OT) levels, and downregulated the expression of postsynaptic density protein 95 (PSD-95) in the hippocampus. Morphological analysis by transmission electron microscopy (TEM) demonstrated that exposure to TCS induced morphological changes to synapses and neurons in the hippocampus of offspring. These findings suggested that TCS exposure during lactation contributed to abnormal social behaviors accompanied by increased peripheral inflammation and altered hippocampal neuroplasticity, which provides a deeper understanding of the effects of TCS exposure during early life on brain function and behavioral phenotypes.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Triclosan , Animais , Feminino , Hipocampo , Humanos , Lactação , Masculino , Exposição Materna/efeitos adversos , Camundongos , Comportamento Social , Triclosan/toxicidade
4.
Biol Pharm Bull ; 44(3): 325-331, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33642542

RESUMO

The neuroprotective effects of heme oxygenase (HO) have been well investigated. The potential effects of exogenous supplementation of biliverdin (BVD), one of the main products catalyzed by HO, on neurobehaviors are still largely unknown. The present study aimed to investigate the effects of BVD treatment on depression, anxiety, and memory in adult mice. Mice were injected with BVD through tail vein daily for a total 5 d, and depression- and anxiety-like behaviors were conducted by using open field test (OFT), novelty suppressed feeding (NSF), forced swimming test (FST) and tail suspension test (TST) since the third day of BVD administration. Novel object recognition (NOR) paradigm was used for memory formation test. After the final test, serum and hippocampal levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) of mice were analyzed by enzyme-linked immunosorbent assay (ELISA). The results showed that BVD treatment at low dose (2 mg/kg) induced depression-like behaviors, and high dose (8 mg/kg) BVD injection increased anxiety-like behaviors and impaired memory formation in mice. ELISA data showed that BVD treatment significantly increased hippocampal IL-6 and TNF-α level while only decreasing serum IL-6 level of mice. The present data suggest that exogenous BVD treatment induced depression- and anxiety-like phenotypes, which may be related to inflammatory factors, providing BVD may be a potential target for the prevention of mental disorders.


Assuntos
Ansiedade/induzido quimicamente , Biliverdina/efeitos adversos , Depressão/induzido quimicamente , Transtornos da Memória/induzido quimicamente , Animais , Ansiedade/metabolismo , Depressão/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Interleucina-6/sangue , Interleucina-6/metabolismo , Masculino , Transtornos da Memória/metabolismo , Camundongos Endogâmicos ICR , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismo
5.
Biol Pharm Bull ; 42(8): 1268-1274, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31366864

RESUMO

Increasing evidence shows depression relevant to oxidative stress and inflammation. Anti-inflammatory strategies or antioxidants have led to the development of new antidepressants. Brazilin is a natural product from the Chinese traditional medicine Caesalpinia sappan L., exerting anti-inflammatory, antioxidant, anti-platelet concentration, and anti-cancer effects. While the antidepressant effect of brazilin is largely unknown. In present study, we investigated the effects of brazilin on H2O2-induced oxidative injury in PC12 cells and on depression- and anxiety-like behaviors of chronically mild stressed (CMS)-induced depression mice. It was found that brazilin pre-treatment (both 10 and 20 µM) significantly increased cell viability and decreased cell apoptosis in H2O2-treated PC12 cells. Furthermore, repetitive administration of brazilin to CMS-induced depression mice by intraperitoneal injection (10 mg/kg) made the mice significantly lose their latency of feeding in novelty-suppressed feeding test (NSF), have more the sucrose preference in sucrose preference test (SPT), and more time spent in the central zone without affecting their crossing activity in open field test (OFT). These results suggested that brazilin can play a role in antidepressant and anxiolytic-like behaviors for CMS-induced depression mice probably through inhibiting the oxidative stress. Therefore, brazilin is worth to be further explored for treating depressive and anxiety disorders.


Assuntos
Ansiolíticos/uso terapêutico , Antidepressivos/uso terapêutico , Ansiedade/tratamento farmacológico , Benzopiranos/uso terapêutico , Depressão/tratamento farmacológico , Estresse Psicológico/tratamento farmacológico , Animais , Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Benzopiranos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Masculino , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos
6.
Biol Pharm Bull ; 41(7): 1040-1048, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29743387

RESUMO

SuHeXiang (SHX) has been used to treat a wide range of diseases, including those related to the central nervous system. However, the effects of SHX on mood disorders are still elusive. This study aimed to investigate the effects of SHX essential oil on stress-induced depression of mice. In an acute stress-induced depression model, mice inhaled vehicle (1% Tween 80) for 10 min or 10% SHX for 10 or 30 min once daily for 12 continuous days. In the chronic mild stress (CMS)-induced depression model, mice were exposed to a 28-d CMS treatment. Tail suspension test (TST), forced swimming test (FST), sucrose preference test (SPT), open field test (OFT), and novelty suppressed feeding (NSF) test were conducted. In addition, serum levels of angiogenin (ANG), thrombopoietin (TPO), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) were evaluated by enzyme-linked immunosorbent assay (ELISA) assays. The results showed that in mice exposed to acute stress, repeated SHX inhalation exerted significant antidepressant and anxiolytic activities, and also reduced the serum levels of ANG, TPO, IL-6, and TNF-α. It also significantly reversed the depressive and anxiety-like behaviors, and reduced the serum levels of ANG and TPO in mice exposed to CMS. This is the first report to show that SHX inhalation could produce significant antidepressant and anxiolytic-like effects. These effects might be mediated by SHX ability to modulate the inflammatory response, and reduce dysfunction of vascular genesis and thrombosis. These results support further exploration for developing SHX inhalation as a novel therapeutic strategy for depression and stress-related disorders.


Assuntos
Ansiolíticos/farmacologia , Antidepressivos/uso terapêutico , Ansiedade/tratamento farmacológico , Depressão/tratamento farmacológico , Medicamentos de Ervas Chinesas/química , Óleos Voláteis/farmacologia , Administração por Inalação , Animais , Ansiolíticos/uso terapêutico , Antidepressivos/farmacologia , Ansiedade/etiologia , Comportamento Animal/efeitos dos fármacos , Depressão/etiologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Atividade Motora/efeitos dos fármacos , Óleos Voláteis/química , Estresse Psicológico/complicações
7.
J Neurosci ; 35(21): 8308-21, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26019344

RESUMO

Fear extinction forms a new memory but does not erase the original fear memory. Exposure to novelty facilitates transfer of short-term extinction memory to long-lasting memory. However, the underlying cellular and molecular mechanisms are still unclear. Using a classical contextual fear-conditioning model, we investigated the effect of novelty on long-lasting extinction memory in rats. We found that exposure to a novel environment but not familiar environment 1 h before or after extinction enhanced extinction long-term memory (LTM) and reduced fear reinstatement. However, exploring novelty 6 h before or after extinction had no such effect. Infusion of the ß-adrenergic receptor (ßAR) inhibitor propranolol and glucocorticoid receptor (GR) inhibitor RU486 into the CA1 area of the dorsal hippocampus before novelty exposure blocked the effect of novelty on extinction memory. Propranolol prevented activation of the hippocampal PKA-CREB pathway, and RU486 prevented activation of the hippocampal extracellular signal-regulated kinase 1/2 (Erk1/2)-CREB pathway induced by novelty exposure. These results indicate that the hippocampal ßAR-PKA-CREB and GR-Erk1/2-CREB pathways mediate the extinction-enhancing effect of novelty exposure. Infusion of RU486 or the Erk1/2 inhibitor U0126, but not propranolol or the PKA inhibitor Rp-cAMPS, into the CA1 before extinction disrupted the formation of extinction LTM, suggesting that hippocampal GR and Erk1/2 but not ßAR or PKA play critical roles in this process. These results indicate that novelty promotes extinction memory via hippocampal ßAR- and GR-dependent pathways, and Erk1/2 may serve as a behavioral tag of extinction.


Assuntos
Extinção Psicológica/fisiologia , Medo/fisiologia , Hipocampo/fisiologia , Receptores Adrenérgicos beta/fisiologia , Receptores de Glucocorticoides/fisiologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Memória/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/antagonistas & inibidores
8.
J Neurosci ; 34(30): 10010-21, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25057203

RESUMO

Maladaptive memories elicited by exposure to environmental stimuli associated with drugs of abuse are often responsible for relapse among addicts. Interference with the reconsolidation of drug memory can inhibit drug seeking. Previous studies have indicated that the dephosphorylation of the eukaryotic initiation factor 2 α-subunit (eIF2α) plays an important role in synaptic plasticity and long-term memory consolidation, but its role in the reconsolidation of drug memory remains unknown. The amygdala is required for the reconsolidation of a destabilized drug memory after retrieval of drug-paired stimuli. Here, we used conditioned place preference (CPP) and self-administration procedures to determine whether amygdala eIF2α dephosphorylation is required for the reconsolidation of morphine and cocaine memories in rats. We found that the levels of eIF2α phosphorylation (Ser51) and activating transcription factor 4 (ATF4) were decreased after reexposure to a previously morphine- or cocaine-paired context (i.e., a memory retrieval procedure) in the basolateral amygdala (BLA) but not in the central amygdala. Intra-BLA infusions of Sal003, a selective inhibitor of eIF2α dephosphorylation, immediately after memory retrieval disrupted the reconsolidation of morphine- or cocaine-induced CPP, leading to a long-lasting suppression of drug-paired stimulus-induced craving. Advanced knockdown of ATF4 expression in the BLA by lentivirus-mediated short-hairpin RNA blocked the disruption of the reconsolidation of morphine-induced CPP induced by Sal003 treatment. Furthermore, inhibition of eIF2α dephosphorylation in the BLA immediately after light/tone stimulus retrieval decreased subsequent cue-induced heroin-seeking behavior in the self-administration procedure. These results demonstrate that eIF2α dephosphorylation in the BLA mediates the memory reconsolidation of drug-paired stimuli.


Assuntos
Tonsila do Cerebelo/metabolismo , Sinais (Psicologia) , Comportamento de Procura de Droga/fisiologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Memória/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Cocaína/administração & dosagem , Comportamento de Procura de Droga/efeitos dos fármacos , Heroína/administração & dosagem , Masculino , Memória/efeitos dos fármacos , Morfina/administração & dosagem , Fosforilação/fisiologia , Ratos , Ratos Sprague-Dawley , Autoadministração
9.
Int J Mol Sci ; 16(12): 28386-400, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26633367

RESUMO

The trefoil factors (TFFs) are a family of three polypeptides, among which TFF1 and TFF3 are widely distributed in the central nervous system. Our previous study indicated that TFF3 was a potential rapid-onset antidepressant as it reversed the depressive-like behaviors induced by acute or chronic mild stress. In order to further identify the antidepressant-like effect of TFF3, we applied an olfactory bulbectomy (OB), a classic animal model of depression, in the present study. To elucidate the mechanism underlying the antidepressant-like activity of TFF3, we tested the role of brain-derived neurotrophic factor (BDNF)-extracellular signal-related kinase (ERK)-cyclic adenosine monophosphate response element binding protein (CREB) signaling in the hippocampus in the process. Chronic systemic administration of TFF3 (0.1 mg/kg, i.p.) for seven days not only produced a significant antidepressant-like efficacy in the OB paradigm, but also restored the expression of BDNF, pERK, and pCREB in the hippocampal CA3. Inhibition of BDNF or extracellular signal-related kinase (ERK) signaling in CA3 blocked the antidepressant-like activity of TFF3 in OB rats. Our findings further confirmed the therapeutic effect of TFF3 against depression and suggested that the normalization of the BDNF-ERK-CREB pathway was involved in the behavioral response of TFF3 for the treatment of depression.


Assuntos
Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Depressão/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neuropeptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Antidepressivos/administração & dosagem , Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Depressão/etiologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Neuropeptídeos/administração & dosagem , Bulbo Olfatório/cirurgia , Fosforilação , Ratos , Receptor trkB/antagonistas & inibidores , Fator Trefoil-3
10.
Addict Biol ; 19(6): 996-1005, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23750993

RESUMO

Cocaine sensitization and reward are reported to be under the influence of diurnal rhythm. However, no previous studies have reported brain areas that play a role as modulators and underlie the mechanism of diurnal variations in cocaine reward. We examined (1) the diurnal rhythm of glycogen synthase kinase-3ß (GSK-3ß) activity in the suprachiasmatic nucleus (SCN) and reward-related brain areas in naive rats; (2) the effect of day and night on the acquisition of cocaine-induced conditioned place preference (CPP); (3) the influence of cocaine-induced CPP on GSK-3ß activity in the SCN and reward-related brain areas; and (4) the effect of the GSK-3ß inhibitor SB216763 microinjected bilaterally into the ventral tegmental area (VTA) on cocaine-induced CPP. A significant diurnal rhythm of GSK-3ß activity was found in the SCN and reward-related brain areas, with diurnal variations in cocaine-induced CPP. GSK-3ß activity in the SCN and reward-related brain areas exhibited marked diurnal variations in rats treated with saline. GSK-3ß activity in rats treated with cocaine exhibited distinct diurnal variations only in the prefrontal cortex and VTA. Cocaine decreased the expression of phosphorylated GSK-3ß (i.e. increased GSK-3ß activity) only in the VTA in rats trained and tested at ZT4 and ZT16. SB216763 microinjected into the VTA bilaterally eliminated the diurnal variations in cocaine-induced CPP, but did not affect the acquisition of cocaine-induced CPP. These findings suggest that the VTA may be a critical area involved in the diurnal variations in cocaine-induced CPP, and GSK-3ß may be a regulator of diurnal variations in cocaine-induced CPP.


Assuntos
Cocaína/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Quinase 3 da Glicogênio Sintase/fisiologia , Área Tegmentar Ventral/enzimologia , Animais , Ritmo Circadiano/efeitos dos fármacos , Indóis/farmacologia , Masculino , Maleimidas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Ratos Sprague-Dawley , Recompensa , Núcleo Supraquiasmático/enzimologia , Área Tegmentar Ventral/efeitos dos fármacos
11.
Artigo em Inglês | MEDLINE | ID: mdl-38104921

RESUMO

Sleep is one of the most important physiological activities in life and promotes the growth and development of an individual. In modern society, sleep deprivation (SD), especially among adolescents, has become a common phenomenon. However, long-term SD severely affected adolescents' neurodevelopment leading to abnormal behavioral phenotypes. Clinical studies indicated that sleep problems caused increased aggressive behavior in adolescents. Aggressive behavior was subordinate to social behaviors, in which defensive attack was often the last line for survival. Meanwhile, increasing studies shown that gut microbiota regulated social behaviors by affecting specific brain regions via the gut-brain axis. However, whether postweaning intermittent SD is related to defensive attack in adulthood, and if so, whether it is mediated by the microbiota-gut-brain axis are still elusive. Combined with microbial sequencing and hippocampal metabolomics, the present study mainly investigated the long-term effects of postweaning intermittent SD on defensive attack in adult mice. Our study demonstrated that postweaning intermittent SD enhanced defensive attack and impaired long-term memory formation in adult female mice. Moreover, microbial sequencing and LC-MS analysis showed that postweaning intermittent SD altered the gut microbial composition and the hippocampal metabolic profile in female mice, respectively. Our attention has been drawn to the neuroactive ligand-receptor interaction pathway and related metabolites. In conclusion, our findings provide a new perspective on the relationship of early-life SD and defensive attack in adulthood, and also highlight the importance of sleep in early-life, especially in females.


Assuntos
Microbioma Gastrointestinal , Privação do Sono , Animais , Camundongos , Feminino , Privação do Sono/metabolismo , Eixo Encéfalo-Intestino , Encéfalo/metabolismo , Microbioma Gastrointestinal/fisiologia , Comportamento Social
12.
Brain Behav ; 14(3): e3448, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38444330

RESUMO

INTRODUCTION: Treatment strategies for depression based on interventions for glucose and lipid metabolism disorders are receiving increasing attention. Investigating the mechanism of their antidepressant effect and exploring new diagnostic and therapeutic biomarkers have attracted increasing attention. Dulaglutide, a long-acting GLP-1 receptor agonist, has been reported to alleviate cognitive deficits and neuronal damage. However, the antidepressant effect of dulaglutide and, especially, the underlying mechanism are still poorly understood. In this study, we aimed to explore the underlying biomarkers of depression and potential modulatory targets of dulaglutide in chronic mild stress (CMS) mice. METHODS: Sixty mice were randomly divided into a control group (CON group), a CMS+Vehicle group (CMS+Veh group), a CMS+0.3 mg/kg dulaglutide group (Low Dula group), and a CMS+0.6 mg/kg dulaglutide group (High Dula group). Numerous behavioral tests, mainly the open field test, forced swimming test, and tail suspension test, were applied to evaluate the potential effect of dulaglutide treatment on anxiety- and depression-like behaviors in mice exposed to chronic stress. Furthermore, a liquid chromatography-tandem mass spectrometry-based metabolomics approach was utilized to investigate the associated mechanisms of dulaglutide treatment. RESULTS: Three weeks of dulaglutide treatment significantly reversed depressive-like but not anxiety-like behaviors in mice exposed to chronic stress for 4 weeks. The results from the metabolomics analysis showed that a total of 20 differentially expressed metabolites were identified between the CON and CMS+Veh groups, and 46 metabolites were selected between the CMS+Veh and High Dula groups in the hippocampus of the mice. Comprehensive analysis indicated that lipid metabolism, amino acid metabolism, energy metabolism, and tryptophan metabolism were disrupted in model mice that experienced depression and underwent dulaglutide therapy. CONCLUSION: The antidepressant effects of dulaglutide in a CMS depression model were confirmed. We identified 64 different metabolites and four major pathways associated with metabolic pathophysiological processes. These primary data provide a new perspective for understanding the antidepressant-like effects of dulaglutide and may facilitate the use of dulaglutide as a potential therapeutic strategy for depression.


Assuntos
Antidepressivos , Depressão , Peptídeos Semelhantes ao Glucagon/análogos & derivados , Fragmentos Fc das Imunoglobulinas , Proteínas Recombinantes de Fusão , Animais , Camundongos , Depressão/tratamento farmacológico , Homeostase , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Biomarcadores
13.
Neuropharmacology ; 248: 109869, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354850

RESUMO

Aggression is an instinctive behavior that has been reported to be influenced by early-life stress. However, the potential effects of acute stress during the postweaning period, a key stage for brain development, on defensive aggression and the associated mechanism remain poorly understood. In the present study, aggressive behaviors were evaluated in adolescent mice exposed to postweaning stress. Serum corticosterone and testosterone levels, neural dendritic spine density, and gut microbiota composition were determined to identify the underlying mechanism. Behavioral analysis showed that postweaning stress reduced locomotor activity in mice and decreased defensive aggression in male mice. ELISA results showed that postweaning stress reduced serum testosterone levels in female mice. Golgi staining analysis demonstrated that postweaning stress decreased neural dendritic spine density in the medial prefrontal cortex of male mice. 16S rRNA sequencing results indicated that postweaning stress altered the composition of the gut microbiota in male mice. Combined, these results suggested that postweaning stress alters defensive aggression in male mice, which may be due to changes in neuronal structure as well as gut microbiota composition. Our findings highlight the long-lasting and sex-dependent effects of early-life experience on behaviors.


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , Masculino , Feminino , Microbioma Gastrointestinal/fisiologia , RNA Ribossômico 16S/genética , Encéfalo , Comportamento Animal , Testosterona
14.
Pharmacol Biochem Behav ; 242: 173807, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925482

RESUMO

BACKGROUND: Postweaning is a pivotal period for brain development and individual growth. As an important chemical used in medicines, foods and beverages, sodium citrate (SC) is commonly available. Although some effects of SC exposure on individual physiology have been demonstrated, the potential long-lasting effects of postweaning dietary SC exposure on social behaviours are still elusive. METHODS: Both postweaning male and female C57BL/6 mice were exposed to SC through drinking water for a total of 3 weeks. A series of behavioural tests, including social dominance test (SDT), social interaction test (SIT), bedding preference test (BPT) and sexual preference test (SPT), were performed in adolescence and adulthood. After these tests, serum oxytocin (OT) levels and gut microbiota were detected. RESULTS: The behavioural results revealed that postweaning SC exposure decreased the social dominance of male mice in adulthood and female mice in both adolescence and adulthood. SC exposure also reduced the sexual preference rates of both males and females, while it had no effect on social interaction behaviour. ELISA results indicated that SC exposure decreased the serum OT levels of females but not males. 16S rRNA sequencing analysis revealed a significant difference in ß-diversity after SC exposure in both males and females. The correlation coefficient indicated the correlation between social behaviours, OT levels and dominant genera of gut microbiota. CONCLUSION: Our findings suggest that postweaning SC exposure may have enduring and sex-dependent effects on social behaviours, which may be correlated with altered serum OT levels and gut microbiota composition.

15.
J Psychiatry Neurosci ; 38(5): 306-16, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23611177

RESUMO

BACKGROUND: Glutamate N-methyl-D-aspartate (NMDA) receptor antagonists exert fast-acting antidepressant effects, providing a promising way to develop a new classification of antidepressant that targets the glutamatergic system. In the present study, we examined the potential antidepressant action of 7-chlorokynurenic acid (7-CTKA), a glycine recognition site NMDA receptor antagonist, in a series of behavioural models of depression and determined the molecular mechanisms that underlie the behavioural actions of 7-CTKA. METHODS: We administered the forced swim test, novelty-suppressed feeding test, learned helplessness paradigm and chronic mild stress (CMS) paradigm in male rats to evaluate the possible rapid antidepressant-like actions of 7-CTKA. In addition, we assessed phospho-glycogen synthase kinase-3ß (p-GSK3ß) level, mammalian target of rapamycin (mTOR) function, and postsynaptic protein expression in the medial prefrontal cortex (mPFC) and hippocampus. RESULTS: Acute 7-CTKA administration produced rapid antidepressant-like actions in several behavioural tests. It increased p-GSK3ß, enhanced mTOR function and increased postsynaptic protein levels in the mPFC. Activation of GSK3ß by LY294002 completely blocked the antidepressant-like effects of 7-CTKA. Moreover, 7-CTKA did not produce rewarding properties or abuse potential. LIMITATIONS: It is possible that 7-CTKA modulates glutamatergic transmission, thereby causing enduring alterations of GSK3ß and mTOR signalling, although we did not provide direct evidence to support this possibility. Thus, the therapeutic involvement of synaptic adaptions engaged by 7-CTKA requires further study. CONCLUSION: Our findings demonstrate that acute 7-CTKA administration produced rapid antidepressant-like effects, indicating that the behavioural response to 7-CTKA is mediated by GSK3ß and mTOR signalling function in the mPFC.


Assuntos
Antidepressivos/farmacologia , Ácido Cinurênico/análogos & derivados , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Comportamento de Escolha/efeitos dos fármacos , Cromonas/administração & dosagem , Cromonas/farmacologia , Relação Dose-Resposta a Droga , Ativadores de Enzimas/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Desamparo Aprendido , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Resposta de Imobilidade Tônica/efeitos dos fármacos , Ácido Cinurênico/antagonistas & inibidores , Ácido Cinurênico/farmacologia , Masculino , Microinjeções , Morfolinas/administração & dosagem , Morfolinas/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Estresse Psicológico/psicologia , Serina-Treonina Quinases TOR/metabolismo
16.
Brain Behav ; 13(1): e2833, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36573693

RESUMO

INTRODUCTION: Several studies have linked inflammation and oxidative stress with the pathogenesis of depression. Artesunate is a commonly used medication to treat malaria and has been shown to produce antioxidant, anti-inflammatory, and immunomodulatory effects. However, its prophylactic effects on depression and depression-related brain pathology are unknown. METHODS: In Experiment 1, using a PC12 cell line, we investigated whether artesunate can prevent hydrogen peroxide (H2 O2 )-induced oxidative injury that mimics oxidative stress commonly observed in the depressed brain. Next, using lipopolysaccharide (LPS)-induced mouse model of depression, we investigated whether artesunate can prevent behavioral deficits observed in the open field test, novelty-suppressed feeding test, sucrose preference test, forced swimming test, and tail suspension procedure. RESULTS: We found that artesunate significantly prevented a H2 O2 -induced reduction in PC12 cell activity, suggesting its antioxidant potential. We also found that mice pretreated with artesunate (5, 15 mg/kg) intraperitoneally (i.p.) prior to the LPS (.8 mg/kg, i.p.) treatment showed fewer and less severe depression- and anxiety-like behaviors than the LPS-treated control mice. CONCLUSION: Our findings indicate that artesunate produces antioxidant effect, as well as antidepressant and anxiolytic effects. Importantly, our findings first demonstrate that artesunate can prevent LPS-induced depression- and anxiety-like symptoms, strongly suggesting its prophylactic potential in the treatment of depression and, perhaps, other psychiatric disorders associated with inflammation and oxidative stress.


Assuntos
Antimaláricos , Depressão , Camundongos , Animais , Depressão/etiologia , Artesunato/farmacologia , Artesunato/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antioxidantes/farmacologia , Lipopolissacarídeos/farmacologia , Inflamação/tratamento farmacológico , Modelos Animais de Doenças , Comportamento Animal
17.
Front Psychiatry ; 14: 1192379, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234209

RESUMO

Background: The pathogenesis of depression is closely related to changes in hippocampal synaptic plasticity; however, the underlying mechanism is still unclear. Brain-specific angiogenesis inhibitor 1-associated protein 2 (BAIAP2), a postsynaptic scaffold protein in excitatory synapses important for synaptic plasticity, is highly expressed in the hippocampus and has been implicated in several psychiatric disorders. However, the role of BAIAP2 in depression remains poorly understood. Methods: In the present study, a mouse model of depression was established via exposure to chronic mild stress (CMS). An adeno-associated virus (AAV) vector expressing BAIAP2 was injected into the hippocampal brain region of mice and a BAIAP2 overexpression plasmid was transfected into HT22 cells to upregulate BAIAP2 expression. Depression- and anxiety-like behaviors and dendritic spine density were examined in mice using behavioral tests and Golgi staining, respectively. In vitro, hippocampal HT22 cells were treated with corticosterone (CORT) to simulate the stress state, and the effect of BAIAP2 on CORT-induced cell injury was explored. Reverse transcription-quantitative PCR and western blotting were employed to determine the expression levels of BAIAP2 and those of the synaptic plasticity-related proteins glutamate receptor ionotropic, AMPA 1 (GluA1), and synapsin 1 (SYN1). Results: Mice exposed to CMS exhibited depression- and anxiety-like behaviors accompanied by decreased levels of BAIAP2 in the hippocampus. In vitro, the overexpression of BAIAP2 increased the survival rate of CORT-treated HT22 cells and upregulated the expression of GluA1 and SYN1. Consistent with the in vitro data, the AAV-mediated overexpression of BAIAP2 in the hippocampus of mice significantly inhibited CMS-induced depression-like behavior, concomitant with increases in dendritic spine density and the expression of GluA1 and SYN1 in hippocampal regions. Conclusion: Our findings indicate that hippocampal BAIAP2 can prevent stress-induced depression-like behavior and may be a promising target for the treatment of depression or other stress-related diseases.

18.
Neurosci Biobehav Rev ; 155: 105433, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37898446

RESUMO

Ample sleep is an important basis for maintaining health, however with the pace of life accelerating in modern society, more people are using sacrificial sleep to cope with these social changes. Sleep deprivation can have negative effects on cognitive performance and psychosomatic health. It is well known that exercise, as a beneficial intervention strategy for human health, has been increasingly used in the clinic. But it's not clear if it can prevent the negative effects of sleep deprivation. In this meta-analysis, we reviewed 23 articles from PubMed and Web of Science to investigate whether moderate physical exercise can prevent the negative effects of sleep deprivation in rodents. Our findings suggest that exercise can prevent sleep deprivation-induced cognitive impairment and anxiety-like behaviors through multiple pathways. We also discuss possible molecular mechanisms involved in this protective effect, highlighting the potential of exercise as a preventive or therapeutic strategy for sleep deprivation-induced negative effects.


Assuntos
Exercício Físico , Privação do Sono , Humanos , Privação do Sono/complicações , Privação do Sono/psicologia , Sono , Ansiedade
19.
Pharmacol Biochem Behav ; 232: 173657, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37804868

RESUMO

Increasing evidence indicates that sleep deprivation (SD) can exert multiple negative effects on neuronal circuits, resulting in memory impairment, depression, and anxiety, among other consequences. The long-term effects of SD during early life on behavioral phenotypes in adulthood are still poorly understood. In this study, we investigated the long-lasting effects of SD in adolescence on social behaviors, including empathic ability and social dominance, and the role of the gut microbiota in these processes, using a series of behavioral paradigms in mice combined with 16S rRNA gene pyrosequencing. Behavioral assay results showed that SD in adolescence significantly reduced the frequency of licking, the total time spent licking, and the time spent sniffing during the emotional contagion test in male mice, effects that were not observed in female mice. These findings indicated that SD in adolescence exerts long-term, negative effects on empathic ability in mice and that this effect is sex-dependent. In contrast, SD in adolescence had no significant effect on locomotor activities, social dominance but decreased social interaction in male mice in adulthood. Meanwhile, 16S rRNA gene pyrosequencing results showed that gut microbial richness and diversity were significantly altered in adult male mice subjected to SD in adolescence. Our data provide direct evidence that SD in youth can induce alterations in empathic ability in adult male mice, which may be associated with changes in the gut microbiota. These findings highlight the long-lasting effects of sleep loss in adolescence on social behaviors in adulthood and the role played by the brain-gut axis.

20.
Neurosci Lett ; 799: 137096, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36738955

RESUMO

The lactation period is an important period for individual development and a sensitive period for the behavioral phenotypes and plasticity of individual offspring. Early life experiences (e.g., maternal deprivation (MD) and neglect) have significant long-lasting and dual effects on individual stress reactivities during adulthood. Theoretically, stress inoculation can improve the adaptive capacity of the body, but overstress can lead to dysfunction when adaptive mechanisms fail.To date, the potential effects of late lactational MD on the socioemotional behaviors of mouse offspring during adulthood are still not fully understood. In the present study, mice were subjected to early deprivation by individually separating pups from their dam for 0 min, 15 min, and 3 h per day from PND 13-25. The social dominance test (SDT), social interaction test (SI), open field test (OFT), and forced swim test (FST) were carried out during adulthood. The results showed that the social dominance of male mice in the 15 min/d MD group significantly increased, especially in low-rank mice. In the 3 h/d MD group, the social dominance of female mice was decreased, especially in the lower-rank mice. The anxiolytic and antidepressant-like effects of the 15 min/d MD group were significantly increased in male mice. Our study provides direct evidence that MD during late lactation period results in long-lasting effects on social dominance as well as on anxiety and depression phenotypes in a sex-dependent manner.


Assuntos
Ansiedade , Privação Materna , Animais , Camundongos , Masculino , Feminino , Ansiedade/psicologia , Comportamento Animal , Natação/psicologia , Lactação , Estresse Psicológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA