Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 87(22): e0112021, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34524893

RESUMO

An efficient reactive oxygen species (ROS) detoxification system is vital for the survival of the pathogenic fungus Aspergillus fumigatus within the host high-ROS environment of the host. Therefore, identifying and targeting factors essential for oxidative stress response is one approach to developing novel treatments for fungal infections. The oxidation resistance 1 (Oxr1) protein is essential for protection against oxidative stress in mammals, but its functions in pathogenic fungi remain unknown. The present study aimed to characterize the role of an Oxr1 homolog in A. fumigatus. The results indicated that the OxrA protein plays an important role in oxidative stress resistance by regulating the catalase function in A. fumigatus, and overexpression of catalase can rescue the phenotype associated with OxrA deficiency. Importantly, the deficiency of oxrA decreased the virulence of A. fumigatus and altered the host immune response. Using the Aspergillus-induced lung infection model, we demonstrated that the ΔoxrA mutant strain induced less tissue damage along with decreased levels of lactate dehydrogenase (LDH) and albumin release. Additionally, the ΔoxrA mutant caused inflammation at a lower degree, along with a markedly reduced influx of neutrophils to the lungs and a decreased secretion of cytokine usually associated with recruitment of neutrophils in mice. These results characterize the role of OxrA in A. fumigatus as a core regulator of oxidative stress resistance and fungal pathogenesis. IMPORTANCE Knowledge of ROS detoxification in fungal pathogens is useful in the design of new antifungal drugs and could aid in the study of oxidative stress resistance mechanisms. In this study, we demonstrate that OxrA protein localizes to the mitochondria and functions to protect against oxidative damage. We demonstrate that OxrA contributes to oxidative stress resistance by regulating catalase function, and overexpression of catalase (CatA or CatB) can rescue the phenotype that is associated with OxrA deficiency. Remarkably, a loss of OxrA attenuated the fungal virulence in a mouse model of invasive pulmonary aspergillosis and altered the host immune response. Therefore, our finding indicates that inhibition of OxrA might be an effective approach for alleviating A. fumigatus infection. The present study is, to the best of our knowledge, a pioneer in reporting the vital role of Oxr1 protein in pathogenic fungi.


Assuntos
Aspergilose , Aspergillus fumigatus , Proteínas Fúngicas/metabolismo , Estresse Oxidativo , Animais , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/patogenicidade , Catalase , Camundongos , Espécies Reativas de Oxigênio , Virulência
2.
Microbiol Spectr ; 10(1): e0199921, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196814

RESUMO

A human host exploits stresses such as acidic/alkaline pH, antifungal drugs, and reactive oxygen species to kill microbial pathogens such as the fungus Aspergillus fumigatus. However, A. fumigatus is resistant to these stresses in vitro. Therefore, what accounts for the potent antifungal activity of the human host? In this observation, we show that simultaneous exposure to acidic pH and oxidative stresses is much more potent than the individual stresses themselves and that this combinatorial stress kills A. fumigatus synergistically in vitro. Interestingly, A. fumigatus is resistant to the combination of alkaline pH and oxidative stress. Quantitative real-time PCR analyses showed that acidic/alkaline pH stress can mediate oxidative stress responses in A. fumigatus by regulating the expression of catalase-encoding genes. We further show that A. fumigatus is sensitive to the combination of acidic/alkaline stress and azole drug stress. Transcriptome analysis revealed that the sensitivity of A. fumigatus to azole drugs under acidic/alkaline conditions may be related to changes in genetic stability, sphingolipid metabolism, lipid metabolism, and amino acid metabolism. Collectively, our findings suggest that combinatorial stress represents a powerful fungicidal mechanism employed by hosts against pathogens, which suggests novel approaches to potentiate antifungal therapy. IMPORTANCE The human host combats fungal infections via phagocytic cells that recognize and kill fungal pathogens. Immune cells combat Aspergillus fumigatus infections with a potent mixture of chemicals, including reactive oxygen species, acidic/alkaline stress, and antifungal drugs. However, A. fumigatus is relatively resistant to these stresses in vitro. In this observation, we show that it is the combination of acidic/alkaline pH and oxidative or azole stress that kills A. fumigatus so effectively, and we define the molecular mechanisms that underlie this potency. Our findings suggest that combinatorial stress is a powerful fungicidal mechanism employed by hosts, which suggests novel approaches to potentiate antifungal therapy. This study provides a platform for future studies that will address the combinatorial impacts of various environmental stresses on A. fumigatus and other pathogenic microbes.


Assuntos
Ácidos/farmacologia , Álcalis/farmacologia , Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/metabolismo , Azóis/farmacologia , Aspergilose/microbiologia , Aspergillus fumigatus/genética , Azóis/metabolismo , Catalase/genética , Catalase/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA