Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
1.
Nat Immunol ; 23(7): 1109-1120, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761081

RESUMO

Nonimmune cells can have immunomodulatory roles that contribute to healthy development. However, the molecular and cellular mechanisms underlying the immunomodulatory functions of erythroid cells during human ontogenesis remain elusive. Here, integrated, single-cell transcriptomic studies of erythroid cells from the human yolk sac, fetal liver, preterm umbilical cord blood (UCB), term UCB and adult bone marrow (BM) identified classical and immune subsets of erythroid precursors with divergent differentiation trajectories. Immune-erythroid cells were present from the yolk sac to the adult BM throughout human ontogenesis but failed to be generated in vitro from human embryonic stem cells. Compared with classical-erythroid precursors, these immune-erythroid cells possessed dual erythroid and immune regulatory networks, showed immunomodulatory functions and interacted more frequently with various innate and adaptive immune cells. Our findings provide important insights into the nature of immune-erythroid cells and their roles during development and diseases.


Assuntos
Células Precursoras Eritroides , Transcriptoma , Adulto , Diferenciação Celular/genética , Células Eritroides , Sangue Fetal , Humanos , Recém-Nascido , Saco Vitelino
2.
Blood ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635773

RESUMO

Pseudouridine is the most prevalent RNA modification, and its aberrant function is implicated in various human diseases. However, the specific impact of pseudouridylation on hematopoiesis remains poorly understood. In this study, we investigated the role of tRNA pseudouridylation in erythropoiesis and its association with mitochondrial myopathy, lactic acidosis, and sideroblastic anemia syndrome (MLASA) pathogenesis. By utilizing patient-specific induced pluripotent stem cells (iPSCs) carrying a genetic PUS1 mutation and a corresponding mutant mouse model, we demonstrated impaired erythropoiesis in MLASA iPSCs and anemia in the MLASA mouse model. Both MLASA iPSCs and mouse erythroblasts exhibited compromised mitochondrial function and impaired protein synthesis. Mechanistically, we revealed that PUS1 deficiency resulted in reduced mitochondrial tRNA levels due to pseudouridylation loss, leading to aberrant mitochondrial translation. Screening of mitochondrial supplements aimed at enhancing respiration or heme synthesis showed limited effect in promoting erythroid differentiation. Interestingly, the mTOR inhibitor rapamycin facilitated erythroid differentiation in MLASA-iPSCs by suppressing mTOR signaling and protein synthesis, and consistent results were observed in the MLASA mouse model. Importantly, rapamycin treatment effectively ameliorated anemia phenotypes in the MLASA patient. Our findings provide novel insights into the crucial role of mitochondrial tRNA pseudouridylation in governing erythropoiesis and present potential therapeutic strategies for anemia patients facing challenges related to protein translation.

3.
Drug Resist Updat ; 72: 101016, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37980859

RESUMO

Drug resistance remains a major challenge in cancer treatment, necessitating the development of novel strategies to overcome it. Protein arginine methyltransferases (PRMTs) are enzymes responsible for epigenetic arginine methylation, which regulates various biological and pathological processes, as a result, they are attractive therapeutic targets for overcoming anti-cancer drug resistance. The ongoing development of small molecules targeting PRMTs has resulted in the generation of chemical probes for modulating most PRMTs and facilitated clinical treatment for the most advanced oncology targets, including PRMT1 and PRMT5. In this review, we summarize various mechanisms underlying protein arginine methylation and the roles of specific PRMTs in driving cancer drug resistance. Furthermore, we highlight the potential clinical implications of PRMT inhibitors in decreasing cancer drug resistance. PRMTs promote the formation and maintenance of drug-tolerant cells via several mechanisms, including altered drug efflux transporters, autophagy, DNA damage repair, cancer stem cell-related function, epithelial-mesenchymal transition, and disordered tumor microenvironment. Multiple preclinical and ongoing clinical trials have demonstrated that PRMT inhibitors, particularly PRMT5 inhibitors, can sensitize cancer cells to various anti-cancer drugs, including chemotherapeutic, targeted therapeutic, and immunotherapeutic agents. Combining PRMT inhibitors with existing anti-cancer strategies will be a promising approach for overcoming anti-cancer drug resistance. Furthermore, enhanced knowledge of the complex functions of arginine methylation and PRMTs in drug resistance will guide the future development of PRMT inhibitors and may help identify new clinical indications.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Arginina/metabolismo , Arginina/uso terapêutico , Microambiente Tumoral , Proteínas Repressoras/uso terapêutico
4.
Cell Tissue Res ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953986

RESUMO

Erythroid cells, the most prevalent cell type in blood, are one of the earliest products and permeate through the entire process of hematopoietic development in the human body, the oxygen-transporting function of which is crucial for maintaining overall health and life support. Previous investigations into erythrocyte differentiation and development have primarily focused on population-level analyses, lacking the single-cell perspective essential for comprehending the intricate pathways of erythroid maturation, differentiation, and the encompassing cellular heterogeneity. The continuous optimization of single-cell transcriptome sequencing technology, or single-cell RNA sequencing (scRNA-seq), provides a powerful tool for life sciences research, which has a particular superiority in the identification of unprecedented cell subgroups, the analyzing of cellular heterogeneity, and the transcriptomic characteristics of individual cells. Over the past decade, remarkable strides have been taken in the realm of single-cell RNA sequencing technology, profoundly enhancing our understanding of erythroid cells. In this review, we systematically summarize the recent developments in single-cell transcriptome sequencing technology and emphasize their substantial impact on the study of erythroid cells, highlighting their contributions, including the exploration of functional heterogeneity within erythroid populations, the identification of novel erythrocyte subgroups, the tracking of different erythroid lineages, and the unveiling of mechanisms governing erythroid fate decisions. These findings not only invigorate erythroid cell research but also offer new perspectives on the management of diseases related to erythroid cells.

5.
Mol Cell Biochem ; 479(4): 831-841, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37199893

RESUMO

Metastasis is the cause of poor prognosis in ovarian cancer (OC). Enhancer of Zeste homolog 2 (EZH2), a histone-lysine N-methyltransferase enzyme, promotes OC cell migration and invasion by regulating the expression of tissue inhibitor of metalloproteinase-2 (TIMP2) and matrix metalloproteinases-9 (MMP9). Hence, we speculated that EZH2-targeting therapy might suppress OC migration and invasion. In this study, the expression of EZH2, TIMP2, and MMP9 in OC tissues and cell lines was analyzed using The Cancer Genome Atlas (TCGA) database and western blotting, respectively. The effects of SKLB-03220, an EZH2 covalent inhibitor, on OC cell migration and invasion were investigated using wound-healing assays, Transwell assays, and immunohistochemistry. TCGA database analysis confirmed that the EZH2 and MMP9 mRNA expression was significantly higher in OC tissues, whereas TIMP2 expression was significantly lower than that in normal ovarian tissues. Moreover, EZH2 negatively correlated with TIMP2 and positively correlated with MMP9 expression. In addition to the anti-tumor activity of SKLB-03220 in a PA-1 xenograft model, immunohistochemistry results showed that SKLB-03220 markedly increased the expression of TIMP2 and decreased the expression of MMP9. Additionally, wound-healing and Transwell assays showed that SKLB-03220 significantly inhibited the migration and invasion of both A2780 and PA-1 cells in a concentration-dependent manner. SKLB-03220 inhibited H3K27me3 and MMP9 expression and increased TIMP2 expression in PA-1 cells. Taken together, these results indicate that the EZH2 covalent inhibitor SKLB-03220 inhibits metastasis of OC cells by upregulating TIMP2 and downregulating MMP9, and could thus serve as a therapeutic agent for OC.


Assuntos
Acrilamidas , Proteína Potenciadora do Homólogo 2 de Zeste , Neoplasias Ovarianas , Humanos , Feminino , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Neoplasias Ovarianas/genética , Linhagem Celular Tumoral , Inibidor Tecidual de Metaloproteinase-2/genética , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Metaloproteinase 9 da Matriz/genética , Movimento Celular/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
6.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892202

RESUMO

Osteoarthritis (OA) is increasing worldwide, and previous work found that OA increases systemic cartilage oligomeric matrix protein (COMP), which has also been implicated in prostate cancer (PCa). As such, we sought to investigate whether OA augments PCa progression. Cellular proliferation and migration of RM1 murine PCa cells treated with interleukin (IL)-1α, COMP, IL-1α + COMP, or conditioned media from cartilage explants treated with IL-1α (representing OA media) and with inhibitors of COMP were assessed. A validated murine model was used for tumor growth and marker expression analysis. Both proliferation and migration were greater in PCa cells treated with OA media compared to controls (p < 0.001), which was not seen with direct application of the stimulants. Migration and proliferation were not negatively affected when OA media was mixed with downstream and COMP inhibitors compared to controls (p > 0.05 for all). Mice with OA developed tumors 100% of the time, whereas mice without OA only 83.4% (p = 0.478). Tumor weight correlated with OA severity (Pearson correlation = 0.813, p = 0.002). Moreover, tumors from mice with OA demonstrated increased Ki-67 expression compared to controls (mean 24.56% vs. 6.91%, p = 0.004) but no difference in CD31, PSMA, or COMP expression (p > 0.05). OA appears to promote prostate cancer in vitro and in vivo.


Assuntos
Proteína de Matriz Oligomérica de Cartilagem , Proliferação de Células , Osteoartrite , Neoplasias da Próstata , Masculino , Animais , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Camundongos , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Proteína de Matriz Oligomérica de Cartilagem/genética , Linhagem Celular Tumoral , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/etiologia , Movimento Celular/efeitos dos fármacos , Humanos , Modelos Animais de Doenças , Interleucina-1alfa/metabolismo
7.
J Cell Mol Med ; 27(15): 2112-2122, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37264759

RESUMO

miR-138-5p has been identified as a novel cancer-related miRNA molecule in a variety of malignancies. However, the functions and mechanisms underlying miR-138-5p in colorectal carcinoma (CRC) remains largely unknown. In the present study, we analysed the biological effects and clinical significance of miR-138-5p in CRC. miR-138-5p expression was analysed by quantitative real-time PCR in CRC tissues and cell lines. The effects of miR-138-5p on CRC cell growth was detected by cell proliferation, colony formation, cell cycle and cell apoptosis assays in vitro and in vivo. Our data showed that miR-138-5p was significantly downregulated in CRC. Downregulated miR-138-5p was related with poor prognosis in patients with CRC. miR-138-5p suppressed CRC growth but promoted cell death both in vitro and in vivo. Online predictions and integrated experiments identified that miR-138-5p targeted MCU, and downregulated miR-138-5p promoted mitochondrial biogenesis in CRC. In the light of the underlying mechanisms, our results indicated that downregulated miR-138-5p led to increased expression of MCU, which subsequently increased the production of ROS to promote CRC growth. Our results indicated that downregulated miR-138-5p strengthened mitochondrial biogenesis through targeting MCU, thus contributing to CRC cell growth, which may provide a potential therapeutic target for CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , Biogênese de Organelas , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Linhagem Celular , Neoplasias Colorretais/patologia
8.
Br J Haematol ; 201(4): 690-703, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36708268

RESUMO

JAK2V617F is the most frequent mutation in BCR-ABL-negative myeloproliferative neoplasms (MPNs). It is an important but not the only determinant of MPN phenotype. We performed high-throughput sequencing on JAK2V617F+ essential thrombocythaemia (ET) and polycythaemia vera (PV) patient samples to unveil factors involved in phenotypic heterogeneity and to identify novel therapeutic targets for MPN. Two concurrent mutations that may affect phenotype were identified, including mutations in SH2B3, which is primarily prevalent in PV, and SF3B1, which is more commonly mutated in ET. Next, we conducted transcriptomic analysis at the haematopoietic stem cell (HSC) and megakaryocyte (MK)-erythroid progenitor (MEP) levels. Inflammatory signalling pathways were elevated in both ET HSCs and MEPs, unlike in PV HSCs and MEPs. Notably, Wnt/ß-catenin signalling was uniquely upregulated during ET haematopoietic differentiation from HSC to MEP, and inhibiting Wnt/ß-catenin signalling blocked MK differentiation in vitro. Consistently, Wnt/ß-catenin inhibitor administration decreased platelet counts in JAK2V617F+ MPN mice by blocking MEPs and MK progenitors and by inhibiting maturation of MKs, while in wild-type mice, Wnt/ß-catenin inhibitor did not significantly reduce platelet counts. In conclusion, our findings provide new insights into the mechanisms underlying phenotypic differentiation of JAK2V617F+ PV and ET and indicate Wnt/ß-catenin signalling as a potential therapeutic target for MPN.


Assuntos
Transtornos Mieloproliferativos , Policitemia Vera , Trombocitemia Essencial , Animais , Camundongos , beta Catenina , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Policitemia Vera/tratamento farmacológico , Policitemia Vera/genética , Trombocitemia Essencial/tratamento farmacológico , Trombocitemia Essencial/genética , Mutação , Fenótipo , Janus Quinase 2/genética
9.
Opt Express ; 31(10): 16495-16507, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157727

RESUMO

The abrupt behaviors of microdroplets during the LN-based photovoltaic manipulation may cause the transient instability and even failure of the microfluidic manipulation. In this paper, we perform a systematical analysis on the responses of water microdroplets to laser illumination on both naked and PTFE-coated LN:Fe surface, and find that the abrupt repulsive behaviors of the microdroplets are due to the electrostatic transition from the dielectrophoresis (DEP) to electrophoresis (EP) mechanism. Charging of the water microdroplets through the Rayleigh jetting from electrified water/oil interface is suggested as the cause of the DEP-EP transition. Fitting the kinetic data of the microdroplets to the models describing the motion of the microdroplets under the photovoltaic field yields the charging amount depending on the substrate configuration (∼1.7 × 10-11 and 3.9 × 10-12 C on the naked and PTFE-coated LN:Fe substrates), and also reveals the dominance of the EP mechanism in the co-existence of the DEP and EP mechanisms. The outcome of this paper will be quite important to the practicalization of the photovoltaic manipulation in LN-based optofluidic chips.

10.
EMBO Rep ; 22(1): e50535, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33319461

RESUMO

Alternative splicing (AS) leads to transcriptome diversity in eukaryotic cells and is one of the key regulators driving cellular differentiation. Although AS is of crucial importance for normal hematopoiesis and hematopoietic malignancies, its role in early hematopoietic development is still largely unknown. Here, by using high-throughput transcriptomic analyses, we show that pervasive and dynamic AS takes place during hematopoietic development of human pluripotent stem cells (hPSCs). We identify a splicing factor switch that occurs during the differentiation of mesodermal cells to endothelial progenitor cells (EPCs). Perturbation of this switch selectively impairs the emergence of EPCs and hemogenic endothelial progenitor cells (HEPs). Mechanistically, an EPC-induced alternative spliced isoform of NUMB dictates EPC specification by controlling NOTCH signaling. Furthermore, we demonstrate that the splicing factor SRSF2 regulates splicing of the EPC-induced NUMB isoform, and the SRSF2-NUMB-NOTCH splicing axis regulates EPC generation. The identification of this splicing factor switch provides a new molecular mechanism to control cell fate and lineage specification.


Assuntos
Linhagem da Célula , Células-Tronco Pluripotentes , Fatores de Processamento de Serina-Arginina/genética , Diferenciação Celular , Linhagem da Célula/genética , Hematopoese/genética , Células-Tronco Hematopoéticas , Humanos , Proteínas de Membrana , Proteínas do Tecido Nervoso
11.
J Chem Inf Model ; 63(8): 2382-2392, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37037192

RESUMO

Molecular glues are small molecules that simultaneously bind to two proteins, creating a chemically induced protein-protein interface. CELMoDs (cereblon E3 ligase modulators) are a class of molecular glues that promote recruitment of neosubstrate proteins to the E3 ubiquitin ligase cereblon (CRBN) for poly-Lys48-ubiquitination and proteasomal degradation. Ternary complex structures of clinical CELMoDs CC-885 and CC-90009 bound to CRBN and neosubstrate G1 to S phase transition protein 1 (GSPT1) have been experimentally determined. Although cellular degradation is a downstream event, dependent not only on the affinity of the glue CELMoD in the ternary complex, we test the applicability of established structure-based drug design principles to predict binding affinity of CELMoDs to the protein-protein neointerface and correlation to measured cellular degradation for the neosubstrates GSPT1 and zinc finger Aiolos (IKZF3). For a congeneric series of CELMoDs, which have a similar sequence of binding events and resultant binding modes, we conclude that well-established structure-based methods that measure in silico ternary complex stabilities can predict relative degradation potency by CELMoDs.


Assuntos
Peptídeo Hidrolases , Ubiquitina-Proteína Ligases , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Simulação por Computador
12.
Exp Cell Res ; 399(2): 112456, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33417921

RESUMO

Identifying patient mutations driving skeletal development disorders has driven our understanding of bone development. Integrin adhesion deficiency disease is caused by a Kindlin-3 (fermitin family member 3) mutation, and its inactivation results in bleeding disorders and osteopenia. In this study, we uncover a role for Kindlin-3 in the differentiation of bone marrow mesenchymal stem cells (BMSCs) down the chondrogenic lineage. Kindlin-3 expression increased with chondrogenic differentiation, similar to RUNX2. BMSCs isolated from a Kindlin-3 deficient patient expressed chondrocyte markers, including SOX9, under basal conditions, which were further enhanced with chondrogenic differentiation. Rescue of integrin activation by a constitutively activated ß3 integrin construct increased adhesion to multiple extracellular matrices and reduced SOX9 expression to basal levels. Growth plates from mice expressing a mutated Kindlin-3 with the integrin binding site ablated demonstrated alterations in chondrocyte maturation similar to that seen with the human Kindlin-3 deficient BMSCs. These findings suggest that Kindlin-3 expression mirrors RUNX2 during chondrogenesis.


Assuntos
Condrogênese/genética , Proteínas do Citoesqueleto/genética , Proteínas de Membrana/genética , Células-Tronco Mesenquimais/fisiologia , Proteínas de Neoplasias/genética , Animais , Diferenciação Celular/genética , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Transgênicos , Mutação/fisiologia
13.
Environ Res ; 213: 113700, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35716814

RESUMO

Increasing soil carbon (C) sequestration in paddy field and improving rice nitrogen use efficiency (NUE) are vital for sustainable agriculture and environmental protection. It was a benefit practice for achieving these goals by taken rice straw and organic manure managements. However, there is still need to further investigate the effects of different long-term fertilizer managements on soil C sequestration and NUE under the double-cropping rice system in southern of China. Therefore, the effects of different long-term (36-years) fertilizer practices on soil C sequestration and NUE under the double-cropping rice system in southern of China were investigated in the present paper. The field experiment was included four different fertilizer treatments: chemical fertilizer alone (MF), rice straw residue and chemical fertilizer (RF), 30% organic manure and 70% chemical fertilizer (OM), and without fertilizer input as a control (CK). This result indicated that soil C content at plough layer in paddy field with RF and OM treatments were increased, compared with MF and CK treatments. Besides input C directly into paddy field, soil original organic C accumulation with RF and OM treatments were increased by 1.54% and 3.01%, compared with MF treatment. This result indicated that soil TOC content increase rate and annual topsoil organic C sequestration rate in paddy field with RF and OM treatments increased by 55.56%, 88.89% and 48.05%, 76.62%, compared with MF treatment, respectively. Compared with MF treatment, NUE with RF and OM treatments increased by 10.43% and 22.61%, respectively, mainly due to increasing soil organic C. Grain yield of double-cropping rice with RF and OM treatments increased by 1009.5 and 1166.5 kg ha-1, compared with MF treatment, respectively. This result indicated that there was significantly correlation between NUE/NUENPK and TOC content with RF and OM treatments, at early rice and late rice growth seasons. Therefore, it was benefit practice for increasing soil carbon sequestration and improving rice NUE in the double-cropping rice system with long-term application of rice straw and organic manure managements.


Assuntos
Oryza , Solo , Agricultura , Carbono/análise , China , Fertilizantes/análise , Esterco/análise , Nitrogênio/análise , Oryza/química , Solo/química
14.
Molecules ; 27(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36557806

RESUMO

Pesticide residues in food have become an important factor seriously threatening human health. Therefore, this study was conducted to determine the pesticide residues in fruits and vegetables commonly found in Fujian, China, with the aim of constructing a simple and rapid method for pesticide residue monitoring. We collected 5607 samples from local markets and analyzed them for the presence of 45 pesticide residues. A fast, easy, inexpensive, effective, robust, and safe (QuEChERS) multi-residue extraction method followed by liquid chromatography equipped with triple-quadrupole mass spectrometry (LC-MS/MS) was successfully established. This 12-min-long analytical method detects and quantifies pesticide residues with acceptable validation performance parameters in terms of sensitivity, selectivity, linearity, the limit of quantification, accuracy, and precision. The linear range of the calibration curves ranged from 5 to 200 mg/L, the limits of detection for all pesticides ranged from 0.02 to 1.90 µg/kg, and the limits of quantification for the pesticides were 10 µg/kg. The recovery rates for the three levels of fortification ranged from 72.0% to 118.0%, with precision values (expressed as RSD%) less than 20% for all of the investigated analytes. The results showed that 726 (12.95%) samples were contaminated with pesticide residues, 94 (1.68%) samples exceeded the maximum residue limit (MRL) of the national standard (GB 2763-2021, China), 632 (11.23%) samples were contaminated with residues below the MRL, and 4881 (87.05%) samples were pesticide residue-free. In addition, the highest number of multiple pesticide residues was observed in bananas and peppers, which were contaminated with acetamiprid, imidacloprid, pyraclostrobin, and thiacloprid.


Assuntos
Resíduos de Praguicidas , Praguicidas , Humanos , Cromatografia Líquida/métodos , Frutas/química , Resíduos de Praguicidas/análise , Verduras/química , Espectrometria de Massas em Tandem/métodos , Contaminação de Alimentos/análise , Praguicidas/análise , China
15.
Immunology ; 163(1): 74-85, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33421118

RESUMO

Dendritic cells (DCs) play an important role in linking innate and adaptive immunity. DCs can sense endogenous and exogenous antigens and present those antigens to T cells to induce an immune response or immune tolerance. During activation, alternative splicing (AS) in DCs is dramatically changed to induce cytokine secretion and upregulation of surface marker expression. PTBP1, an RNA-binding protein, is essential in alternative splicing, but the function of PTBP1 in DCs is unknown. Here, we found that a specific deficiency of Ptbp1 in DCs could increase MHC II expression and perturb T-cell homeostasis without affecting DC development. Functionally, Ptbp1 deletion in DCs could enhance antitumour immunity and asthma exacerbation. Mechanistically, we found that Pkm alternative splicing and a subset of Ifn response genes could be regulated by PTBP1. These findings revealed the function of PTBP1 in DCs and indicated that PTBP1 might be a novel therapeutic target for antitumour treatment.


Assuntos
Asma/enzimologia , Células Dendríticas/enzimologia , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Pulmão/enzimologia , Linfócitos do Interstício Tumoral/metabolismo , Melanoma Experimental/enzimologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Neoplasias Cutâneas/enzimologia , Linfócitos T/metabolismo , Processamento Alternativo , Animais , Asma/genética , Asma/imunologia , Asma/patologia , Linhagem Celular Tumoral , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/imunologia , Regulação da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Homeostase , Pulmão/imunologia , Pulmão/patologia , Ativação Linfocitária , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Camundongos Knockout , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Linfócitos T/imunologia , Evasão Tumoral , Microambiente Tumoral
16.
Breast Cancer Res Treat ; 187(1): 69-80, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33630196

RESUMO

PURPOSE: Current studies on circulating cell-free DNA (cfDNA) have been focusing on its potential as biomarkers in liquid biopsy by detecting its content or genetic and epigenetic changes for the evaluation of tumor burden and therapeutic efficacy. However, the regulatory mechanism of cfDNA release remains unclear. Stat3 has been documented as an oncogene for the development and metastasis of breast cancer cells. In this study, we investigated whether Stat3 affects the release of cfDNA into blood and its association with the number of circulating tumor cells (CTCs). METHODS: The cfDNA level in plasma of patients with breast cancer and healthy volunteers were determined by quantitative real-time PCR. Three mouse breast cancer models with different Stat3 expression were generated and used to established three breast cancer orthotopic animal models to examine the effect of Stat3 on cfDNA release in vivo. Stat3 mediated Epithelial-mesenchymal phenotype transition of CTCs was determined by immunofluorescence assay and Western blot assay. RESULTS: The data showed that Stat3 increased circulating cfDNA, which is correlated with the increased volume of primary tumors and number of CTCs, accompanied with the dynamic EMT changes regulated by Snail induction. Furthermore, the high level of total circulating cfDNA and Stat3-cfDNA in patients with breast cancer were detected by quantitative real-time PCR using GAPDH and Stat3 primers. CONCLUSION: Our results suggested that Stat3 increases the circulating cfDNA and CTCs in breast cancer.


Assuntos
Neoplasias da Mama , Ácidos Nucleicos Livres , Células Neoplásicas Circulantes , Animais , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Ácidos Nucleicos Livres/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Biópsia Líquida , Camundongos , Fator de Transcrição STAT3/genética
17.
Opt Express ; 29(3): 3808-3824, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770973

RESUMO

Development of photovoltaic water-microdroplet manipulation using LN:Fe crystals has to meet the requirement of the hybrid and heating-avoided design of biological lab-on-chips. To fulfill this, we demonstrate a successful manipulation of a water microdroplet on a hydrophobic substrate by utilizing the long-range photovoltaic interaction from a distant LN:Fe crystal (see Visualization 1). The maximal manipulation distance (MMD) is found to be dependent on the laser-illumination intensity at the LN:Fe crystal and it can be tuned up to a sub-centimeter level (∼4 mm). Basing on the two-center model of light-induced charge transport in the LN:Fe crystal, we establish an analytic model to describe the force balance during the microdroplet manipulation under a long-range photovoltaic interaction. Either shortening the manipulation distance or increasing the illumination intensity can enhance the photovoltaic interaction and increase the velocity of the microdroplet being manipulated. An abrupt shape change followed by a fast repelling movement of the water microdroplet is observed under a strong photovoltaic interaction (see Visualization 2).

18.
Exp Mol Pathol ; 122: 104678, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34450114

RESUMO

Stem cell factor (SCF) is an essential cytokine during development and is necessary for gametogenesis, hematopoiesis, mast cell development, stem cell function, and melanogenesis. Here, we measure SCF concentration and distribution in adult humans and mice using gene expression analysis, tissue staining, and organ protein lysates. We demonstrate continued SCF expression in many cell types and tissues into adulthood. Tissues with high expression in adult humans included stomach, spleen, kidney, lung, and pancreas. In mice, we found high SCF expression in the esophagus, ovary, uterus, kidney, and small intestine. Future studies may correlate our findings of increased, organ-specific SCF concentrations within adult tissues with increased risk of SCF/CD117-related disease.


Assuntos
Diferenciação Celular/genética , Proteínas Proto-Oncogênicas c-kit/genética , Fator de Células-Tronco/genética , Distribuição Tecidual/genética , Adulto , Animais , Gametogênese/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Hematopoese/genética , Humanos , Rim/crescimento & desenvolvimento , Rim/metabolismo , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Mastócitos/metabolismo , Camundongos , Pâncreas/crescimento & desenvolvimento , Pâncreas/metabolismo , Baço/crescimento & desenvolvimento , Baço/metabolismo , Células-Tronco/metabolismo , Estômago/crescimento & desenvolvimento , Estômago/metabolismo
19.
Analyst ; 145(24): 8030-8037, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33057461

RESUMO

A multifunctional sensing platform based on bright blue-fluorescent nitrogen-doped carbon dots (N-CDs) has been ingeniously designed for the sensitive determination of Hg2+ and pH. The N-CDs were facilely fabricated via a one-step hydrothermal treatment of citric acid and folic acid with admirable merits including exceptional stability, low toxicity and distinguished biocompatibility. Intriguingly, the obtained N-CDs can be utilized to detect Hg2+ on the basis of the dynamic quenching effect, showing a linear range of 0 µM-400 µM as well as a detection limit of 0.124 µM. In addition, the obtained N-CDs revealed a significant emission enhancement with increasing pH from 4.0 to 10.0 and acquired a good linearity in the pH range of 6.8-7.8. Taking advantage of efficient analysis of Hg2+ and pH in aqueous solution, the as-synthesized N-CDs have been extended to the visualization biosensing platform to timely track Hg2+ and pH in living cells.


Assuntos
Mercúrio , Pontos Quânticos , Carbono , Concentração de Íons de Hidrogênio , Mercúrio/análise , Mercúrio/química , Nitrogênio
20.
Analyst ; 146(6): 1907-1914, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33481969

RESUMO

We have facilely synthesized orange emissive carbon nanodots (O-CDs) via a hydrothermal method using citric acid and 5-aminosalicylic acid. The obtained O-CDs show the excellent characteristics of excitation independence, low toxicity, fabulous photostability and superior biocompatibility. Based on these captivating properties, as-prepared O-CDs have been successfully implemented as a multi-functional sensing platform for fluorescent and colorimetric bimodal recognition of Cu2+ and pH. Upon adding Cu2+, the orange fluorescence of the O-CDs is evidently quenched with a linear range of 0 µM-300 µM, and a detection limit of 28 nM. Additionally, as the pH increases from 7.0 to 10.2, the O-CDs manifest an obvious decrease in orange fluorescence, which shows a pKa value of 8.73 and excellent linearity in the pH range of 8.0-9.2. Appealingly, the laser confocal imaging of O-CD-stained cells demonstrates that the fluctuations of Cu2+ and pH can be visualized in living cells.


Assuntos
Citrus sinensis , Pontos Quânticos , Carbono , Colorimetria , Corantes Fluorescentes , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA