Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 52(17): 5827-5860, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37531220

RESUMO

The shortage of freshwater resources caused by heavy metal pollution is an acute global issue, which has a great impact on environmental protection and human health. Therefore, the exploitation of new strategies for designing and synthesizing green, efficient, and economical materials for the detection and removal of heavy metal ions is crucial. Among the various methods for the detection and removal of heavy ions, advanced functional systems including nanomaterials, polymers, porous materials, and biomaterials have attracted considerable attention over the past several years due to their capabilities of real-time detection, excellent removal efficiency, anti-interference, quick response, high selectivity, and low limit of detection. In this tutorial review, we review the general design principles underlying the aforementioned functional materials, and in particular highlight the fundamental mechanisms and specific examples of detecting and removing heavy metal ions. Additionally, the methods which enhance water purification quality using these functional materials have been reviewed, also current challenges and opportunities in this exciting field have been highlighted, including the fabrication, subsequent treatment, and potential future applications of such functional materials. We envision that this tutorial review will provide invaluable guidance for the design of functional materials tailored towards the detection and removal of heavy metals, thereby expediting the development of high-performance materials and fostering the development of more efficient approaches to water pollution remediation.

2.
Small ; 18(35): e2201949, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35927028

RESUMO

Heavy metal pollution has resulted in numerous environmental challenges. However, classic approaches, involving the use of solid adsorbents are subject to limitations, including the high energy consumption required for processing before and after use. Accordingly, strategies that facilitate the use of metal capture media that extends beyond waste remediation are attractive. Herein, a porous fluorescent aerogel (CPC aerogel) is constructed by immersing amino-based carbon dots (CDs-NH2 ) into a polyethyleneimine (PEI)/carboxymethylated cellulose (CMC) aerogel network for the simultaneous detection and adsorption of Cr(VI). Adsorption experiments confirm that the CMC/PEI containing CDs-NH2 aerogel (CPC aerogel) exhibits good Cr(VI) extraction capacity, and can reach a level that conforms with industrial water safety standards. In addition, the CPC aerogel can continuously detect and remove Cr(VI) at high flux. Following Cr(VI) absorption, the CPC aerogel may be vulcanized (MSx -CPC gel) and used for solar thermoelectric generation resulting in power generation. Additionally, the MSx -CPC gel can be used for solar steam generation and exhibits excellent evaporation rates of ≈1.31 kg m-2 h-1 under one sun irradiation. The results serve to underscore how materials designed for metal ion recognition and adsorption once exhausted can be exploited to provide materials for solar thermoelectric power generation and seawater desalination.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Cromo/análise , Purificação da Água/métodos
3.
Environ Sci Technol ; 56(16): 11718-11728, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35917327

RESUMO

With the fast development of modern industries, scarcity of freshwater resources caused by heavy metal pollution (i.e., Hg2+) has become a severe issue for human beings. Herein, a 3D-MoS2 sponge as an excellent absorbent is fabricated for mercury removal due to its multidimensional adsorption pathways, which decreases the biomagnification effect of methylmercury in water bodies. Furthermore, a secondary water purification strategy is employed to harvest drinkable water with the exhausted adsorbents, thus alleviating the crisis of drinking water shortage. Compared to the conventional landfill treatment, the exhausted MoS2 sponge absorbents are further functionalized with a poly(ethylene glycol) (PEG) layer to prevent the heavy metals from leaking and enhance the hydrophilicity for photothermal conversion. The fabricated evaporator displays excellent evaporation rates of ∼1.45 kg m-2 h-1 under sunlight irradiation and produces freshwater with Hg2+ under the WHO drinking water standard at 0.001 mg L-1. These results not only assist in avoiding the biodeposition effect of mercury in water but also provide an environment-friendly strategy to recycle hazardous adsorbents for water purification.


Assuntos
Água Potável , Mercúrio , Metais Pesados , Energia Solar , Purificação da Água , Humanos , Molibdênio , Luz Solar , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA