Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 332: 118358, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38763370

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The incidence of skin trauma is high and the repair process is complex, often leading to poor healing and other issues, which can result in significant economic and social burdens. Traditional Chinese medicine (TCM) is a valuable resource with proven effectiveness and safety in wound repair, widely utilized in clinical practice. A systematic analysis of wound healing with a focus on TCM research progress holds both academic and clinical importance. AIM OF THE REVIEW: This article reviews the research progress of TCM in promoting wound healing, and provides basic data for the development of innovative drugs that promote wound healing. MATERIALS AND METHODS: This article provides a review of the literature from the past decade and conducts a thorough analysis of various databases that contain reports on the use of TCM for wound repair. The data for this systematic research was gathered from electronic databases including CNKI, SciFinder, and PubMed. The study explores and summarizes the research findings and patterns by creating relevant charts. RESULTS: This study reviewed the mechanism of wound healing, experimental TCM methods to promote wound healing, the theory and mode of action of TCM to promote wound healing, the active ingredients of TCM that promote wound healing, the efficacy of TCM formulae to promote wound healing, and the potential toxicity of TCM and its antidotes. This study enriched the theory of TCM in promoting wound healing. CONCLUSION: Skin wound healing is a complex process that can be influenced by various internal and external factors. This article offers a theoretical foundation for exploring and utilizing TCM resources that enhance wound repair. By analyzing a range of TCM that promote wound healing, the article highlights the clinical importance and future potential of these medicines in promoting wound healing.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Cicatrização , Cicatrização/efeitos dos fármacos , Humanos , Medicina Tradicional Chinesa/métodos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
2.
Phytomedicine ; 130: 155345, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38810555

RESUMO

BACKGROUND: Sepsis causes inflammation in response to infection, often leading to acute lung injury (ALI). Yazhicao (Commelina communis L., YZC) is widely distributed in the global tropics and has good anti-respiratory inflammatory activity; however, the protection of YZC against septic-ALI has not been established. PURPOSE: The role of YZC in septic-ALI will be investigated in this study. METHODS AND RESULTS: In this study, YZC was shown to inhibit excessive inflammation and alleviate septic-ALI. Network pharmacology predicts that Quercetin, Acacetin and Diosmetin have the potential to serve as the pharmacological substance basis of YZC in alleviating septic-ALI. The metabolomics results indicated that YZC could improve the metabolic disorders caused by septic-ALI, which were mostly concerned with energy metabolism and amino acid metabolism, with Trimethylamine (TMA)/Trimethylamine N-oxide (TMAO) being potential small molecule metabolic markers for the clinical diagnosis and treatment of septic-ALI. YZC inhibits the initiation and progression of septic-ALI by controlling the TMA/TMAO metabolites. Our results also suggest that YZC protects the intestinal barrier from damage. Furthermore, our research indicated that YZC reduces TMAO synthesis by inhibiting TMA production through remodeling the intestine microbiota. We investigated the mechanism of YZC-mediated protection against septic-ALI and showed that YZC reduced the expression of proteins associated with NLRP3 inflammatory vesicles in the lung by inhibiting the expression of NF-κB. CONCLUSION: These results show that YZC inhibits the NF-κB/NLRP3 signaling pathway by regulating metabolic and intestinal flora disorders in septic-ALI mice to reduce TMAO synthesis. This study presents a theoretical groundwork for the advancement of novel medications and clinical use of YZC to enhance septic-ALI and furnishes a theoretical rationale for regulating intestinal microbiota as a therapeutic instrument to treat sepsis and septic-ALI.


Assuntos
Lesão Pulmonar Aguda , Microbioma Gastrointestinal , Metabolômica , Metilaminas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sepse , Transdução de Sinais , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Sepse/tratamento farmacológico , Metilaminas/metabolismo , Camundongos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Camundongos Endogâmicos C57BL , Extratos Vegetais/farmacologia , Modelos Animais de Doenças , Farmacologia em Rede
3.
J Ethnopharmacol ; 324: 117736, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38242219

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Physalis L. (Solanaceae) is commonly used in the treatment of dermatitis, leprosy, bronchitis, pneumonia, hepatitis and rheumatism in China and other Asian countries. AIM OF THE REVIEW: This article reviews the resources, cultivation, phytochemistry, pharmacological properties, and applications of Physalis L., and proposes further research strategies to enhance its therapeutic potential in treating various human diseases. MATERIALS AND METHODS: We conducted a systematic search of electronic databases, including CNKI, SciFinder and PubMed, using the term "Physalis L." to collect information on the resources, phytochemistry, pharmacological activities, and applications of Physalis L. in China during the past ten years (2013.1-2023.1). RESULTS: So far, a variety of chemical constituents have been isolated and identified from Physalis L. mainly including steroids, flavonoids, and so on. Various pharmacological activities were evaluated by studying different extracts of Physalis L., these activities include anti-inflammatory, antibacterial, antioxidant, antiviral, antineoplastic, and other aspects. CONCLUSION: Physalis L. occupies an important position in the traditional medical system. It is cost-effective and is a significant plant with therapeutic applications in modern medicine. However, further in-depth studies are needed to determine the medical use of this plant resources and cultivation, chemical composition, pharmacological effects and applications.


Assuntos
Physalis , Humanos , Physalis/química , Medicina Tradicional , Fitoterapia , Medicina Tradicional Chinesa , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Etnofarmacologia
4.
Int J Biol Macromol ; 253(Pt 8): 127647, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37884235

RESUMO

Aging is a degenerative progress, accompanied by oxidative damage, metabolic disorders and intestinal flora imbalance. Natural macromolecular polysaccharides have shown excellent anti-aging and antioxidant properties, while maintaining metabolic and intestinal homeostasis. The molecular weight, monosaccharide composition, infrared spectrum and other chemical structure information of four Rehmannia glutinosa polysaccharides (RG50, RG70, RG90, RGB) were determined, and their free radical scavenging ability was assessed. Molecular weight and monosaccharide composition analysis exhibited that RG50 (2-72 kDa), RG70 (3.2-37 kDa), RG70 (3-42 kDa), and RGB (3.1-180 kDa) were heteropolysaccharide with significant different monosaccharide species and molar ratios. We found that RG70 had the best antioxidant activity in vitro and RG70 could enhance the antioxidant enzyme system of Caenorhabditis elegans, diminished lipofuscin and reactive oxygen species levels, up-regulate the expression of daf-16, skn-1 and their downstream genes, and down-regulate the expression of age-1. Metabolomics results showed that RG70 mainly influenced glycine, serine and threonine metabolism and citric acid cycle. 16S rRNA sequencing showed that RG70 significantly up-regulated the abundance of Lachnospiraceae_NK4B4_group, which were positively correlated with amino acid metabolism and energy cycling. These results suggest that RG70 may delay aging by enhancing antioxidant effects, affecting probiotics and regulating key metabolic pathways.


Assuntos
Microbioma Gastrointestinal , Rehmannia , Animais , Caenorhabditis elegans , Antioxidantes/farmacologia , Antioxidantes/química , Rehmannia/química , RNA Ribossômico 16S , Polissacarídeos/farmacologia , Polissacarídeos/química , Envelhecimento , Monossacarídeos/farmacologia
5.
Sci Bull (Beijing) ; 67(22): 2298-2304, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36546220

RESUMO

Weak radiative hyperon decays, important to test the strong interaction and relevant in searches for beyond the standard model physics, have remained puzzling both experimentally and theoretically for a long time. The recently updated branching fraction and first measurement of the asymmetry parameter of Λ→nγ by the BESIII Collaboration further exacerbate the issue, as none of the existing predictions can describe the data. We show in this work that the covariant baryon chiral perturbation theory, with constraints from the latest measurements of hyperon non-leptonic decays, can well describe the BESIII data. The predicted branching fraction and asymmetry parameter for Ξ-→Σ-γ are also in agreement with the experimental data. We note that a more precise measurement of the asymmetry parameter, which is strongly constrained by chiral symmetry and related with that of Σ+→pγ, is crucial to test Hara's theorem. We further predict the branching fraction and asymmetry parameter of Σ0→nγ, whose future measurement can serve as a highly nontrivial check on our understanding of weak radiative hyperon decays and on the covariant baryon chiral perturbation theory.

6.
Front Plant Sci ; 13: 854103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693158

RESUMO

Diacylglycerol acyltransferases (DGAT) function as the key rate-limiting enzymes in de novo biosynthesis of triacylglycerol (TAG) by transferring an acyl group from acyl-CoA to sn-3 of diacylglycerol (DAG) to form TAG. Here, two members of the type 3 DGAT gene family, GmDGAT3-1 and GmDGAT3-2, were identified from the soybean (Glycine max) genome. Both of them were predicted to encode soluble cytosolic proteins containing the typical thioredoxin-like ferredoxin domain. Quantitative PCR analysis revealed that GmDGAT3-2 expression was much higher than GmDGAT3-1's in various soybean tissues such as leaves, flowers, and seeds. Functional complementation assay using TAG-deficient yeast (Saccharomyces cerevisiae) mutant H1246 demonstrated that GmDGAT3-2 fully restored TAG biosynthesis in the yeast and preferentially incorporated monounsaturated fatty acids (MUFAs), especially oleic acid (C18:1) into TAGs. This substrate specificity was further verified by fatty-acid feeding assays and in vitro enzyme activity characterization. Notably, transgenic tobacco (Nicotiana benthamiana) data showed that heterogeneous expression of GmDGAT3-2 resulted in a significant increase in seed oil and C18:1 levels but little change in contents of protein and starch compared to the EV-transformed tobacco plants. Taken together, GmDGAT3-2 displayed a strong enzymatic activity to catalyze TAG assembly with high substrate specificity for MUFAs, particularly C18:1, playing an important role in the cytosolic pathway of TAG synthesis in soybean. The present findings provide a scientific reference for improving oil yield and FA composition in soybean through gene modification, further expanding our knowledge of TAG biosynthesis and its regulatory mechanism in oilseeds.

7.
Sci Bull (Beijing) ; 68(8): 779-782, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37024326
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA