Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 599(7885): 399-403, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34789901

RESUMO

The breakdown of translational symmetry at heterointerfaces leads to the emergence of new phonon modes localized at the interface1. These modes have an essential role in thermal and electrical transport properties in devices, especially in miniature ones wherein the interface may dominate the entire response of the device2. Although related theoretical work began decades ago1,3-5, experimental research is totally absent owing to challenges in achieving the combined spatial, momentum and spectral resolutions required to probe localized modes. Here, using the four-dimensional electron energy-loss spectroscopy technique, we directly measure both the local vibrational spectra and the interface phonon dispersion relation for an epitaxial cubic boron nitride/diamond heterointerface. In addition to bulk phonon modes, we observe modes localized at the interface and modes isolated from the interface. These features appear only within approximately one nanometre around the interface. The localized modes observed here are predicted to substantially affect the interface thermal conductance and electron mobility. Our findings provide insights into lattice dynamics at heterointerfaces, and the demonstrated experimental technique should be useful in thermal management, electrical engineering and topological phononics.

2.
Proc Natl Acad Sci U S A ; 120(13): e2213650120, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36940334

RESUMO

Misfit dislocations at a heteroepitaxial interface produce huge strain and, thus, have a significant impact on the properties of the interface. Here, we use scanning transmission electron microscopy to demonstrate a quantitative unit-cell-by-unit-cell mapping of the lattice parameters and octahedral rotations around misfit dislocations at the BiFeO3/SrRuO3 interface. We find that huge strain field is achieved near dislocations, i.e., above 5% within the first three unit cells of the core, which is typically larger than that achieved from the regular epitaxy thin-film approach, thus significantly altering the magnitude and direction of the local ferroelectric dipole in BiFeO3 and magnetic moments in SrRuO3 near the interface. The strain field and, thus, the structural distortion can be further tuned by the dislocation type. Our atomic-scale study helps us to understand the effects of dislocations in this ferroelectricity/ferromagnetism heterostructure. Such defect engineering allows us to tune the local ferroelectric and ferromagnetic order parameters and the interface electromagnetic coupling, providing new opportunities to design nanosized electronic and spintronic devices.

3.
Proc Natl Acad Sci U S A ; 119(8)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35181607

RESUMO

Interface phonon modes that are generated by several atomic layers at the heterointerface play a major role in the interface thermal conductance for nanoscale high-power devices such as nitride-based high-electron-mobility transistors and light-emitting diodes. Here we measure the local phonon spectra across AlN/Si and AlN/Al interfaces using atomically resolved vibrational electron energy-loss spectroscopy in a scanning transmission electron microscope. At the AlN/Si interface, we observe various interface phonon modes, of which the extended and localized modes act as bridges to connect the bulk AlN modes and bulk Si modes and are expected to boost the phonon transport, thus substantially contributing to interface thermal conductance. In comparison, no such phonon bridge is observed at the AlN/Al interface, for which partially extended modes dominate the interface thermal conductivity. This work provides valuable insights into understanding the interfacial thermal transport in nitride semiconductors and useful guidance for thermal management via interface engineering.

4.
Nano Lett ; 24(11): 3323-3330, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38466652

RESUMO

Nanoscale defects like grain boundaries (GBs) would introduce local phonon modes and affect the bulk materials' thermal, electrical, optical, and mechanical properties. It is highly desirable to correlate the phonon modes and atomic arrangements for individual defects to precisely understand the structure-property relation. Here we investigated the localized phonon modes of Al2O3 GBs by combination of the vibrational electron energy loss spectroscopy (EELS) in scanning transmission electron microscope and density functional perturbation theory (DFPT). The differences between GB and bulk obtained from the vibrational EELS show that the GB exhibited more active vibration at the energy range of <50 meV and >80 meV, and further DFPT results proved the wide distribution of bond lengths at GB are the main factor for the emergence of local phonon modes. This research provides insights into the phonon-defect relation and would be of importance in the design and application of polycrystalline materials.

5.
Phys Rev Lett ; 131(1): 016201, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37478456

RESUMO

In twisted h-BN/graphene heterostructures, the complex electronic properties of the fast-traveling electron gas in graphene are usually considered to be fully revealed. However, the randomly twisted heterostructures may also have unexpected transition behaviors, which may influence the device performance. Here, we study the twist-angle-dependent coupling effects of h-BN/graphene heterostructures using monochromatic electron energy loss spectroscopy. We find that the moiré potentials alter the band structure of graphene, resulting in a redshift of the intralayer transition at the M point, which becomes more pronounced up to 0.22 eV with increasing twist angle. Furthermore, the twisting of the Brillouin zone of h-BN relative to the graphene M point leads to tunable vertical transition energies in the range of 5.1-5.6 eV. Our findings indicate that twist-coupling effects of van der Waals heterostructures should be carefully considered in device fabrications, and the continuously tunable interband transitions through the twist angle can serve as a new degree of freedom to design optoelectrical devices.

6.
Nano Lett ; 22(15): 6207-6214, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35905393

RESUMO

Light-matter interactions are commonly probed by optical spectroscopy, which, however, has some fundamental limitations such as diffraction-limited spatial resolution, tiny momentum transfer, and noncontinuous excitation/detection. In this work, through the use of scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS) with ultrawide energy and momentum match and subnanometer spatial resolution, the longitudinal Fabry-Perot (FP) resonating modes and the transverse whispering-gallery modes (WGMs) in individual SiC nanowires are simultaneously excited and detected, which span from near-infrared (∼1.2 µm) to ultraviolet (∼0.2 µm) spectral regime, and the momentum transfer can range up to 108 cm-1. The size effects on the resonant spectra of nanowires are also revealed. This work provides an alternative technique to optical resonating spectroscopy and light-matter interactions in dielectric nanostructures, which is promising for modulating free electrons via photonic structures.

7.
Nat Mater ; 20(1): 43-48, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32807920

RESUMO

Phonon polaritons enable light confinement at deep subwavelength scales, with potential technological applications, such as subdiffraction imaging, sensing and engineering of spontaneous emission. However, the trade-off between the degree of confinement and the excitation efficiency of phonon polaritons prevents direct observation of these modes in monolayer hexagonal boron nitride (h-BN), where they are expected to reach ultrahigh confinement. Here, we use monochromatic electron energy-loss spectroscopy (about 7.5 meV energy resolution) in a scanning transmission electron microscope to measure phonon polaritons in monolayer h-BN, directly demonstrating the existence of these modes as the phonon Reststrahlen band (RS) disappears. We find phonon polaritons in monolayer h-BN to exhibit high confinement (>487 times smaller wavelength than that of light in free space) and ultraslow group velocity down to about 10-5c. The large momentum compensation provided by electron beams additionally allows us to excite phonon polaritons over nearly the entire RS band of multilayer h-BN. These results open up a broad range of opportunities for the engineering of metasurfaces and strongly enhanced light-matter interactions.

8.
J Colloid Interface Sci ; 661: 493-500, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308889

RESUMO

In this study, we prepared two-dimensional Bi4Ti3O12 nanosheets doped with rare earth ions. The experimental results show that Bi4-xTmxTi3O12 exhibits the highest reduction performance among various rare earth doped Bi4Ti3O12 materials, with a CO yield of 7.25 µmol g-1h-1. Furthermore, a delayed reaction in Bi3.97Tm0.03Ti3O12 is observed upon a cessation of light irradiation. Theoretical calculations reveal that the introduction of Tm ion not only reduces the surface energy of (001) plane and make it preferential growth in Bi4Ti3O12, but also brings the intervening energy level of Tm ion (4f and 4d mixed orbital), which is closer to the conduction band of Bi4Ti3O12 and facilitates charge carrier accumulation in trap states. The electrons retained in the shallow traps promote the hysteresis reaction following a cessation of illumination. This work provides further insights into elucidating precise reduction reaction mechanisms underlying rare earth dopant on photocatalysts. This research provides enhanced insights into unraveling the precise reduction reaction mechanisms influenced by rare earth dopants in photocatalysts.

9.
Nat Commun ; 15(1): 3418, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653990

RESUMO

In single unit-cell FeSe grown on SrTiO3, the superconductivity transition temperature features a significant enhancement. Local phonon modes at the interface associated with electron-phonon coupling may play an important role in the interface-induced enhancement. However, such phonon modes have eluded direct experimental observations. The complicated atomic structure of the interface brings challenges to obtain the accurate structure-phonon relation knowledge. Here, we achieve direct characterizations of atomic structure and phonon modes at the FeSe/SrTiO3 interface with atomically resolved imaging and electron energy loss spectroscopy in an electron microscope. We find several phonon modes highly localized (~1.3 nm) at the unique double layer Ti-O terminated interface, one of which (~ 83 meV) engages in strong interactions with the electrons in FeSe based on ab initio calculations. This finding of the localized interfacial phonon associated with strong electron-phonon coupling provides new insights into understanding the origin of superconductivity enhancement at the FeSe/SrTiO3 interface.

10.
Adv Mater ; 36(19): e2204884, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38374724

RESUMO

Phonon polaritons, quasiparticles arising from strong coupling between electromagnetic waves and optical phonons, have potential for applications in subdiffraction imaging, sensing, thermal conduction enhancement, and spectroscopy signal enhancement. A new class of phonon polaritons in low-symmetry monoclinic crystals, hyperbolic shear polaritons (HShPs), have been verified recently in ß-Ga2O3 by free electron laser (FEL) measurements. However, detailed behaviors of HShPs in ß-Ga2O3 nanostructures still remain unknown. Here, by using monochromatic electron energy loss spectroscopy in conjunction with scanning transmission electron microscopy, the experimental observation of multiple HShPs in ß-Ga2O3 in the mid-infrared (MIR) and far-infrared (FIR) ranges is reported. HShPs in various ß-Ga2O3 nanorods and a ß-Ga2O3 nanodisk are excited. The frequency-dependent rotation and shear effect of HShPs reflect on the distribution of EELS signals. The propagation and reflection of HShPs in nanostructures are clarified by simulations of electric field distribution. These findings suggest that, with its tunable broad spectral HShPs, ß-Ga2O3 is an excellent candidate for nanophotonic applications.

11.
Ultramicroscopy ; 253: 113818, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37544270

RESUMO

Recent advances in scanning transmission electron microscopy have enabled atomic-scale focused, coherent, and monochromatic electron probes, achieving nanoscale spatial resolution, meV energy resolution, sufficient momentum resolution, and a wide energy detection range in electron energy-loss spectroscopy (EELS). A four-dimensional EELS (4D-EELS) dataset can be recorded with a slot aperture selecting the specific momentum direction in the diffraction plane and the beam scanning in two spatial dimensions. In this paper, the basic principle of the 4D-EELS technique and a few examples of its application are presented. In addition to parallelly acquired dispersion with energy down to a lattice vibration scale, it can map the real space variation of any EELS spectrum features with a specific momentum transfer and energy loss to study various locally inhomogeneous scattering processes. Furthermore, simple mathematical combinations associating the spectra at different momenta are feasible from the 4D dataset, e.g., the efficient acquisition of a reliable electron magnetic circular dichroism (EMCD) signal is demonstrated. This 4D-EELS technique provides new opportunities to probe the local dispersion and related physical properties at the nanoscale.

12.
Nat Nanotechnol ; 18(5): 529-534, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36823369

RESUMO

Light confinement in nanostructures produces an enhanced light-matter interaction that enables a vast range of applications including single-photon sources, nanolasers and nanosensors. In particular, nanocavity-confined polaritons display a strongly enhanced light-matter interaction in the infrared regime. This interaction could be further boosted if polaritonic modes were moulded to form whispering-gallery modes; but scattering losses within nanocavities have so far prevented their observation. Here, we show that hexagonal BN nanotubes act as an atomically smooth nanocavity that can sustain phonon-polariton whispering-gallery modes, owing to their intrinsic hyperbolic dispersion and low scattering losses. Hyperbolic whispering-gallery phonon polaritons on BN nanotubes of ~4 nm radius (sidewall of six atomic layers) are characterized by an ultrasmall nanocavity mode volume (Vm ≈ 10-10λ03 at an optical wavelength λ0 ≈ 6.4 µm) and a Purcell factor (Q/Vm) as high as 1012. We posit that BN nanotubes could become an important material platform for the realization of one-dimensional, ultrastrong light-matter interactions, with exciting implications for compact photonic devices.

13.
Nat Commun ; 14(1): 2382, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185918

RESUMO

Isotopic mixtures result in distinct properties of materials such as thermal conductivity and nuclear process. However, the knowledge of isotopic interface remains largely unexplored mainly due to the challenges in atomic-scale isotopic identification. Here, using electron energy-loss spectroscopy in a scanning transmission electron microscope, we reveal momentum-transfer-dependent phonon behavior at the h-10BN/h-11BN isotope heterostructure with sub-unit-cell resolution. We find the phonons' energy changes gradually across the interface, featuring a wide transition regime. Phonons near the Brillouin zone center have a transition regime of ~3.34 nm, whereas phonons at the Brillouin zone boundary have a transition regime of ~1.66 nm. We propose that the isotope-induced charge effect at the interface accounts for the distinct delocalization behavior. Moreover, the variation of phonon energy between atom layers near the interface depends on both of momentum transfer and mass change. This study provides new insights into the isotopic effects in natural materials.

14.
Nat Commun ; 13(1): 6340, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284138

RESUMO

Recently various topological polar structures have been discovered in oxide thin films. Despite the increasing evidence of their switchability under electrical and/or mechanical fields, the dynamic property of isolated ones, which is usually required for applications such as data storage, is still absent. Here, we show the controlled nucleation and motion of isolated three-fold vertices under an applied electric field. At the PbTiO3/SrRuO3 interface, a two-unit-cell thick SrTiO3 layer provides electrical boundary conditions for the formation of three-fold vertices. Utilizing the SrTiO3 layer and in situ electrical testing system, we find that isolated three-fold vertices can move in a controllable and reversible manner with a velocity up to ~629 nm s-1. Microstructural evolution of the nucleation and propagation of isolated three-fold vertices is further revealed by phase-field simulations. This work demonstrates the ability to electrically manipulate isolated three-fold vertices, shedding light on the dynamic property of isolated topological polar structures.

15.
Natl Sci Rev ; 8(2): nwaa087, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34691565

RESUMO

Contact interface properties are important in determining the performances of devices that are based on atomically thin two-dimensional (2D) materials, especially for those with short channels. Understanding the contact interface is therefore important to design better devices. Herein, we use scanning transmission electron microscopy, electron energy loss spectroscopy, and first-principles calculations to reveal the electronic structures within the metallic (1T')-semiconducting (2H) MoTe2 coplanar phase boundary across a wide spectral range and correlate its properties to atomic structures. We find that the 2H-MoTe2 excitonic peaks cross the phase boundary into the 1T' phase within a range of approximately 150 nm. The 1T'-MoTe2 crystal field can penetrate the boundary and extend into the 2H phase by approximately two unit-cells. The plasmonic oscillations exhibit strong angle dependence, that is a red-shift of π+σ (approximately 0.3-1.2 eV) occurs within 4 nm at 1T'/2H-MoTe2 boundaries with large tilt angles, but there is no shift at zero-tilted boundaries. These atomic-scale measurements reveal the structure-property relationships of the 1T'/2H-MoTe2 boundary, providing useful information for phase boundary engineering and device development based on 2D materials.

16.
Nat Commun ; 12(1): 1179, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608559

RESUMO

Directly mapping local phonon dispersion in individual nanostructures can advance our understanding of their thermal, optical, and mechanical properties. However, this requires high detection sensitivity and combined spatial, energy and momentum resolutions, thus has been elusive. Here, we demonstrate a four-dimensional electron energy loss spectroscopy technique, and present position-dependent phonon dispersion measurements in individual boron nitride nanotubes. By scanning the electron beam in real space while monitoring both the energy loss and the momentum transfer, we are able to reveal position- and momentum-dependent lattice vibrations at nanometer scale. Our measurements show that the phonon dispersion of multi-walled nanotubes is locally close to hexagonal-boron nitride crystals. Interestingly, acoustic phonons are sensitive to defect scattering, while optical modes are insensitive to small voids. This work not only provides insights into vibrational properties of boron nitride nanotubes, but also demonstrates potential of the developed technique in nanoscale phonon dispersion measurements.

17.
Sci Bull (Beijing) ; 66(8): 771-776, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36654134

RESUMO

Confined low dimensional charges with high density such as two-dimensional electron gas (2DEG) at interfaces and charged domain walls in ferroelectrics show great potential to serve as functional elements in future nanoelectronics. However, stabilization and control of low dimensional charges is challenging, as they are usually subject to enormous depolarization fields. Here, we demonstrate a method to fabricate tunable charged interfaces with ~77°, 86° and 94° head-to-head polarization configurations in multiferroic BiFeO3 thin films by grain boundary engineering. The adjacent grains are cohesively bonded and the boundary is about 1 nm in width and devoid of any amorphous region. Remarkably, the polarization remains almost unchanged near the grain boundaries, indicating the polarization charges are well compensated, i.e., there should be two-dimensional charge gas confined at grain boundaries. Adjusting the tilt angle of the grain boundaries enables tuning the angle of polarization configurations from 71° to 109°, which in turn allows the control of charge density at the grain boundaries. This general and feasible method opens new doors for the application of charged interfaces in next generation nanoelectronics.

18.
Sci Bull (Beijing) ; 65(10): 820-826, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36659200

RESUMO

Surface phonon polaritons (SPhPs) are potentially very attractive for subwavelength control and manipulation of light at the infrared to terahertz wavelengths. Probing their propagation behavior in nanostructures is crucial to guide rational device design. Here, aided by monochromatic scanning transmission electron microscopy-electron energy loss spectroscopy technique, we measure the dispersion relation of SPhPs in individual SiC nanorods and reveal the effects of size and shape. We find that the SPhPs can be modulated by the geometric shape and size of SiC nanorods. The energy of SPhPs shows red-shift with decreasing radius and the surface optical phonon is mainly concentrated on the surface with large radius. Therefore, the fields can be precisely confined in specific positions by varying the size of the nanorod, allowing effective tuning at nanometer scale. The findings of this work are in agreement with dielectric response theory and numerical simulation, and provide novel strategies for manipulating light in polar dielectrics through shape and size control, enabling the design of novel nanoscale phonon-photonic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA