Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 23(3): 2157-62, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836086

RESUMO

We experimentally demonstrate a quad-carrier 1-Tb/s solution with 37.5-GBaud PM-16QAM signal over 37.5-GHz optical grid at 6.7 b/s/Hz net spectral efficiency. Digital Nyquist pulse shaping at the transmitter and post-equalization at the receiver are employed to mitigate the impairments of joint inter-symbol-interference (ISI) and inter-channel-interference (ICI) symbol degradation. The post-equalization algorithms consist of one sample/symbol based decision-directed least mean square (DD-LMS) adaptive filter, digital post filter and maximum likelihood sequence estimation (MLSE), and a positive iterative process among them. By combining these algorithms, the improvement as much as 4-dB OSNR (0.1nm) at SD-FEC limit (Q(2) = 6.25 corresponding to BER = 2.0e-2) is obtained when compared to no such post-equalization process, and transmission over 820-km EDFA-only standard single-mode fiber (SSMF) link is achieved for two 1.2-Tb/s signals with the averaged Q(2) factor larger than 6.5 dB for all sub-channels. Additionally, 50-GBaud 16QAM operating at 1.28 samples/symbol in a DAC is also investigated and successful transmission over 410-km SSMF link is achieved at 62.5-GHz optical grid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA