Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(12): 4668-4679, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33733753

RESUMO

Soluble oligomers formed by amyloidogenic intrinsically disordered proteins are some of the most cytotoxic species linked to neurodegeneration. Due to the transient and heterogeneous nature of such oligomeric intermediates, the underlying self-association events often remain elusive. NMR relaxation measurements sensitive to zero-frequency spectral densities (J(0)), such as the 15N - R2 rates, are ideally suited to map sites of self-association at atomic resolution without the need of exogenous labels. Such experiments exploit the dynamic exchange between NMR visible monomers and slowly tumbling oligomers. However,15N - R2 rates are also sensitive to intrinsic monomer dynamics, and it is often difficult to discern these contributions from those arising from exchange with oligomers. Another challenge pertains to defining a hierarchy of self-association. Here, using the archetypical amyloidogenic protein alpha synuclein (αS), we show that the temperature-dependence of 15N - R2 effectively identifies self-association sites with reduced bias from internal dynamics. The key signature of the residues involved in self-association is a nonlinear temperature-dependence of 15N - R2 with a positive ΔR2/ΔT slope. These two hallmarks are systematically probed through a thermal R2 correlation matrix, from which the network of residues involved in self-association as well as the hierarchy of αS self-association sites is extracted through agglomerative clustering. We find that aggregation is initiated by residues within the NAC region that is solvent inaccessible in αS fibrils and eventually extends to the N-terminal segment harboring familial PD mutations. These hierarchical self-association maps help dissect the essential drivers of oligomerization and reveal how amyloid inhibitors affect oligomer formation.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Temperatura , alfa-Sinucleína/análise , Humanos , Proteínas Intrinsicamente Desordenadas/síntese química , Modelos Moleculares
2.
ACS Nano ; 18(16): 10874-10884, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38613774

RESUMO

Increasing modal variations of stimulus-responsive materials ensure the high capacity and confidentiality of information storage and encryption systems that are crucial to information security. Herein, thermochromic perovskite microcapsules (TPMs) with dual-variable and quadruple-modal reversible properties are designed and prepared on the original oil-in-fluorine (O/F) emulsion system. The TPMs respond to the orthogonal variations of external UV and thermal stimuli in four reversible switchable modes and exhibit excellent thermal, air, and water stability due to the protection of perovskites by the core-shell structure. Benefiting from the high-density information storage TPMs, multiple information encryptions and decryptions are demonstrated. Moreover, a set of devices are assembled for a multilevel information encryption system. By taking advantage of TPMs as a "private key" for decryption, the signal can be identified as the corresponding binary ASCII code and converted to the real message. The results demonstrate a breakthrough in high-density information storage materials as well as a multilevel information encryption system based on switchable quadruple-modal TPMs.

3.
Nat Commun ; 15(1): 1588, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383659

RESUMO

High performance X-ray detector with ultra-high spatial and temporal resolution are crucial for biomedical imaging. This study reports a dynamic direct-conversion CMOS X-ray detector assembled with screen-printed CsPbBr3, whose mobility-lifetime product is 5.2 × 10-4 cm2 V-1 and X-ray sensitivity is 1.6 × 104 µC Gyair-1 cm-2. Samples larger than 5 cm[Formula: see text]10 cm can be rapidly imaged by scanning this detector at a speed of 300 frames per second along the vertical and horizontal directions. In comparison to traditional indirect-conversion CMOS X-ray detector, this perovskite CMOS detector offers high spatial resolution (5.0 lp mm-1) X-ray radiographic imaging capability at low radiation dose (260 nGy). Moreover, 3D tomographic images of a biological specimen are also successfully reconstructed. These results highlight the perovskite CMOS detector's potential in high-resolution, large-area, low-dose dynamic biomedical X-ray and CT imaging, as well as in non-destructive X-ray testing and security scanning.

4.
Sci Total Environ ; 876: 162546, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36870505

RESUMO

Mine wastewater treatment using bio-sulfate reduction technology forms sulfur-containing wastewater that comprises sulfides (HS- and S2-) and metal ions. Bio­sulfur generated by sulfur-oxidizing bacteria in such wastewater is usually negatively charged hydrocolloidal particles. However, bio­sulfur and metal resource recovery are difficult using traditional methods. In this study, the sulfide biological oxidation-alkali flocculation (SBO-AF) method was investigated to recover the above resources, and to provide a technical reference for mine wastewater resource recovery and heavy metal pollution control. Specifically, the performance of SBO in forming bio­sulfur and the key parameters of SBO-AF were explored and then applied in a pilot-scale process to recover resources from wastewater. Results show that partial sulfide oxidation was achieved under a sulfide loading rate of 5.08 ± 0.39 kg/m3·d, dissolved oxygen of 2.9-3.5 mg/L and temperature of 27-30 °C. The average sulfide oxidation rate and sulfur selectivity ratio were 92.86 % and 90.22 %, respectively. At pH 10, metal hydroxide and bio­sulfur colloids co-precipitated through the precipitation catching and adsorption charge neutralization effect. The average manganese, magnesium and aluminum concentrations and turbidity in the wastewater were 53.93 mg/L, 522.97 mg/L, 34.20 mg/L and 505 NTU, respectively, and decreased to 0.49 mg/L, 80.65 mg/L, 1.00 mg/L and 23.33 NTU, respectively, after treatment. The recovered precipitate mainly contained sulfur, along with metal hydroxides. The average sulfur, manganese, magnesium and aluminum contents were 45.6 %, 29.5 %, 15.1 % and 6.5 %, respectively. Economic feasibility analysis and the above results show that SBO-AF has obvious technical and economic advantages in the recovery resources from mine wastewater.

5.
Nanomaterials (Basel) ; 13(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37887911

RESUMO

To fight against antibacterial-resistant bacteria-induced infections, the development of highly efficient antibacterial agents with a low risk of inducing resistance is exceedingly urgent. Nanozymes can rapidly kill bacteria with high efficiency by generating reactive oxygen species via enzyme-mimetic catalytic reactions, making them promising alternatives to antibiotics for antibacterial applications. However, insufficient catalytic activity greatly limits the development of nanozymes to eliminate bacterial infection. By increasing atom utilization to the maximum, single-atom nanozymes (SAzymes) with an atomical dispersion of active metal sites manifest superior enzyme-like activities and have achieved great results in antibacterial applications in recent years. In this review, the latest advances in antibacterial SAzymes are summarized, with specific attention to the action mechanism involved in antibacterial applications covering wound disinfection, osteomyelitis treatment, and marine antibiofouling. The remaining challenges and further perspectives of SAzymes for practical antibacterial applications are also discussed.

6.
Adv Sci (Weinh) ; 10(22): e2302005, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37246282

RESUMO

Although perovskite nanocrystals have attracted considerable interests as emerging semiconductors in optoelectronic devices, design and fabrication of a deformable structure with high stability and flexibility while meeting the charge transport requirements remain a huge challenge. Herein, a combined soft-hard strategy is demonstrated to fabricate intrinsically flexible all-inorganic perovskite layers for photodetection via ligand cross-linking. Perfluorodecyltrichlorosilane (FDTS) is employed as the capping ligand and passivating agent bound to the CsPbBr3 surface via Pb-F and Br-F interactions. The SiCl head groups of FDTS are hydrolyzed to produce SiOH groups which subsequently condense to form the SiOSi network. The CsPbBr3 @FDTS nanocrystals (NCs) are monodispersed cubes with an average particle size of 13.03 nm and exhibit excellent optical stability. Furthermore, the residual hydroxyl groups on the surface of the CsPbBr3 @FDTS render the NCs tightly packed and cross-linked to each other to form a dense and elastic CsPbBr3 @FDTS film with soft and hard components. The photodetector based on the flexible CsPbBr3 @FDTS film exhibits outstanding mechanical flexibility and robust stability after 5000 bending cycles.

7.
Nano Res ; : 1-7, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37359075

RESUMO

Inorganic perovskite wafers with good stability and adjustable sizes are promising in X-ray detection but the high synthetic temperature is a hindrance. Herein, dimethyl sulfoxide (DMSO) is used to prepare the CsPbBr3 micro-bricks powder at room temperature. The CsPbBr3 powder has a cubic shape with few crystal defects, small charge trap density, and high crystallinity. A trace amount of DMSO attaches to the surface of the CsPbBr3 micro-bricks via Pb-O bonding, forming the CsPbBr3-DMSO adduct. During hot isostatic processing, the released DMSO vapor merges the CsPbBr3 micro-bricks, producing a compact and dense CsPbBr3 wafer with minimized grain boundaries and excellent charge transport properties. The CsPbBr3 wafer shows a large mobility-lifetime (µτ) product of 5.16 × 10-4 cm2·V-1, high sensitivity of 14,430 µC·Gyair-1·cm-2, low detection limit of 564 nGyair·s-1, as well as robust stability in X-ray detection. The results reveal a novel strategy with immense practical potential pertaining to high-contrast X-ray detection. Electronic Supplementary Material: Supplementary material (further details of the characterization, SEM images, AFM images, KPFM images, schematic illustration, XRD patterns, XPS spectra, FTIR spectra, UPS spectra, and stability tests) is available in the online version of this article at 10.1007/s12274-023-5487-3.

8.
ACS Omega ; 7(17): 14952-14960, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35557688

RESUMO

Triallyl isocyanurate (TAIC) was modified by hydrogen silicone oil (SO) via hydrosilylation reaction, generating the original TAIC-SO (TS) intermediate. After the cross-linking polymerization of TS (PTS), the shape-stabilized phase change materials (PCMs) consisting of n-octadecane and silicone-modified supporting matrix were first synthesized by an in situ reaction. Remarkably, the novel three-dimensional PTS network effectively prevents the leakage of n-octadecane during its phase transition, solving the prominent problem of solid-liquid PCMs in practical applications. Moreover, n-octadecane is uniformly dispersed in the continuous and high-strength cross-linked network, contributing to excellent thermal reliability and structural stability of PTS/n-octadecane (TSO) composites. Differential scanning calorimetry analysis of the optimal TSO composite indicates that melting and freezing temperatures are 29.05 and 22.89 °C, and latent heats of melting and freezing are 130.35 and 129.81 J/g, respectively. After comprehensive characterizations, the shape-stabilized TSO composites turn out to be promising in thermal energy storage applications. Meanwhile, the strategy is practical and economical due to its advantages of easy operation, mild conditions, short reaction time, and low energy consumption.

9.
Adv Sci (Weinh) ; : e2204512, 2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36372541

RESUMO

Although perovskite wafers with a scalable size and thickness are suitable for direct X-ray detection, polycrystalline perovskite wafers have drawbacks such as the high defect density, defective grain boundaries, and low crystallinity. Herein, PbI2 -DMSO powders are introduced into the MAPbI3 wafer to facilitate crystal growth. The PbI2 powders absorb a certain amount of DMSO to form the PbI2 -DMSO powders and PbI2 -DMSO is converted back into PbI2 under heating while releasing DMSO vapor. During isostatic pressing of the MAPbI3 wafer with the PbI2 -DMSO solid additive, the released DMSO vapor facilitates in situ growth in the MAPbI3 wafer with enhanced crystallinity and reduced defect density. A dense and compact MAPbI3 wafer with a high mobility-lifetime (µτ) product of 8.70 × 10-4 cm2 V-1 is produced. The MAPbI3 -based direct X-ray detector fabricated for demonstration shows a high sensitivity of 1.58 × 104 µC Gyair-1  cm-2 and a low detection limit of 410 nGyair s-1 .

10.
Adv Sci (Weinh) ; 7(23): 2000602, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304741

RESUMO

A new solar energy storage system is designed and synthesized based on phase-changing microcapsules incorporated with black phosphorus sheets (BPs). BPs are 2D materials with broad light absorption and high photothermal performance, which are synthesized and covalently modified with poly(methyl methacrylate) (PMMA) to produce the PMMA-modified BPs (mBPs). With the aid of PMMA, the mBPs and phase-changing materials (PCM, eicosane) are encapsulated together to form microcapsules. The microencapsulated eicosane and mBPs (mBPs-MPCM) composites exhibit a high latent heat of over 180 kJ kg-1, good thermal reliability, as well as excellent photothermal characteristics inherited from BPs. Owing to the direct contact in the integrated mBPs-MPCM composites, the thermal energy generated by mBPs is transferred to eicosane immediately giving rise to three times higher efficiency in solar energy storage compared to microcapsules with mBPs on the surface. The mBPs-MPCM composites have great potential in solar energy storage applications and the concept of integrating photothermal materials and PCMs as the core provides insights into the design of high-efficiency solar energy storage materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA