Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 89(7): 4406-4422, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38512313

RESUMO

The palladium-catalyzed sequential cross-coupling/annulation of ortho-vinyl bromobenzenes with aryl bromides generating phenanthrenes was characterized by density functional theory (DFT). The Pd(II)-Pd(IV) pathway (Path V) is shown to be less probable than the bimetallic pathway (Path I), the latter proceeding via the following six steps: oxidative addition, vinyl-C(sp2)-H activation, Pd(II)-Pd(II) transmetalation, C-C coupling, aryl-C(sp2)-H activation, and reductive elimination. The aryl-C(sp2)-H activation process acts as the rate-determining step (RDS) of the entire chemical transformation, with an activation free energy barrier of ca. 27.4-28.8 kcal·mol-1, in good agreement with the corresponding experimental data (phenanthrenes' yields of ca. 65-90% at 130 °C after 5 h of reaction). The K2CO3 additive effectively reduces the activation free energy barrier of the RDS through direct participation in the reaction while preferentially modulating the charge distributions and increasing the stability of corresponding intermediates and complexes along the reaction path. Furthermore, bonding and electronic structure analyses of the key structures indicate that the chemo- and regioselectivities of the reaction are strongly influenced by both electronic effects and steric hindrance.

2.
J Phys Chem A ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39392902

RESUMO

Transition metal-catalyzed spiroannulations are practical strategies for constructing spirocyclic skeletons of pharmaceutical and biological significance, yet the microscopic mechanism still lacks in-depth explorations. Here, the palladium-catalyzed [2 + 2 + 1] spiroannulation between aryl halides and alkynes was studied by employing the density functional theory (DFT) method. Based on comprehensive explorations on a couple of possible reaction pathways, it is found that the reaction probably experiences C-I oxidative addition, alkyne migration insertion, Cs2CO3-assisted aryl C-H activation, C-Br bond oxidative addition, C-C coupling, arene dearomatization and reductive elimination in sequence and leads to the formation of the spiro[4,5]decane pentacyclic product (P) ultimately. Among these, the C-Br bond oxidative addition step acts as the rate-determining step (RDS) of the whole reaction, featuring a practical free energy barrier of 32.4 kcal·mol-1 at 130 °C. Computationally predicted kinetics such as half-life transferred from the RDS step's barrier on the optimal reaction pathway (1.2 × 101 h) coincides well with corresponding experimental results (91% yield of the spiro[4,5]decane pentacyclic product P after reacting 10 h at 130 °C). In addition, theoretical predictions regarding the solvent/ligand effects and base additive role in the reaction, rationalized by distortion-interaction/natural population/noncovalent interaction analyses, are also in good agreement with experimental data and trend. This good agreement between experiment and theory makes sense for new designations and further experimental improvements of such Pd-catalyzed transformations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA