RESUMO
More than half of the world's population is nourished by crops fertilized with synthetic nitrogen (N) fertilizers. However, N fertilization is a major source of anthropogenic emissions, augmenting the carbon footprint (CF). To date, no global quantification of the CF induced by N fertilization of the main grain crops has been performed, and quantifications at the national scale have neglected the CO2 assimilated by plants. A first cradle-to-grave life cycle assessment was performed to quantify the CF of the N fertilizers' production, transportation, and application to the field and the uses of the produced biomass in livestock feed and human food, as well as biofuel production. We quantified the direct and indirect inventories emitted or sequestered by N fertilization of main grain crops: wheat, maize, and rice. Grain food produced with N fertilization had a net CF of 7.4 Gt CO2eq. in 2019 after excluding the assimilated C in plant biomass, which accounted for a quarter of the total CF. The cradle (fertilizer production and transportation), gate (fertilizer application, and soil and plant systems), and grave (feed, food, biofuel, and losses) stages contributed to the CF by 2%, 11%, and 87%, respectively. Although Asia was the top grain producer, North America contributed 38% of the CF due to the greatest CF of the grave stage (2.5 Gt CO2eq.). The CF of grain crops will increase to 21.2 Gt CO2eq. in 2100, driven by the rise in N fertilization to meet the growing food demand without actions to stop the decline in N use efficiency. To meet the targets of climate change, we introduced an ambitious mitigation strategy, including the improvement of N agronomic efficiency (6% average target for the three crops) and manufacturing technology, reducing food losses, and global conversion to healthy diets, whereby the CF can be reduced to 5.6 Gt CO2eq. in 2100.
Assuntos
Pegada de Carbono , Nitrogênio , Humanos , Fertilizantes/análise , Biocombustíveis , Agricultura , Solo , Produtos Agrícolas , Grão Comestível/química , China , Carbono/análiseRESUMO
Acid rain and invasive plants have quintessential adverse impacts on terrestrial ecosystems. As an environmentally safe method for disposal of invasive plants, we tested the effect of biochar produced from these plants in altering soil deterioration under acid rain as compared with lime. Given the impacts of the feedstock type and soil properties on the response of soil to the added biochar, we hypothesized that the microbial community and functions would respond differently to the charred invasive plants under acid rain. A pot experiment was conducted to examine the response of soil microbiomes and functions to the biochar produced from Blackjack (Biden Pilosa), Wedelia (Wedelia trilobata), and Bitter vine (Mikania micrantha Kunth), or quicklime (CaO) at a rate of 1â¯% (w/w) under acid rain. Like soil pH, the nutrient contents (nitrogen, phosphorus, and potassium), calcium, and cation exchange capacity (CEC) were important as dominant edaphic factors affecting soil microbial community and functionality. In this respect, lime decreased nutrients availability, driven by 11-fold, 44â¯%, and 2-fold increments in calcium content, pH, and C/N ratio. Meanwhile, biochar improved nutrients availability under acid rain owing to maintaining a neutral pH (â¼6.5), increasing calcium (by only 2-fold), and improving CEC, water repellency, and aggregation while decreasing the C/N ratio and aluminum content. Unlike biochar, lime decreased the relative abundance of Nitrosomonadaceae (the dominant ammonia-oxidizing bacteria) while augmenting the relative abundance of some fungal pathogens such as Spizellomycetaceae and Sporormiaceae. Given the highest nitrogen and dissolved organic carbon content than other biochar types, Wedelia-biochar resulted in the greatest relative abundance of Nitrosomonadaceae; thus, the microbial carbon and nitrogen biomasses were maximized. This study outlined the responses of the soil biogeochemical properties and the related microbial community structure and functionality to the biochar produced from invasive plants under acid rain. This study suggests that biochar can replace lime to ameliorate the effects of acid rain on soil physical, chemical and biological properties.
Assuntos
Chuva Ácida , Compostos de Cálcio , Carvão Vegetal , Espécies Introduzidas , Microbiologia do Solo , Solo , Carvão Vegetal/química , Carvão Vegetal/farmacologia , Compostos de Cálcio/farmacologia , Solo/química , Microbiota/efeitos dos fármacos , Óxidos , Wedelia , Concentração de Íons de Hidrogênio , Nitrogênio/análise , Ecossistema , Fósforo/análiseRESUMO
Anthropogenic driven acid gases emission has caused acid rain in many regions globally. Although efforts have been made to assess the effects of acid rain on terrestrial ecosystems, a systematic assessment of growth-related traits across plant aboveground and belowground is lacking. Hence, we performed a phylogenetically controlled meta-analysis of 755 observations from 69 independent studies to quantify the effects of acid rain on six growth-related traits of plant. We estimated the inhibitory effects of acid rain on plant growth in general and found that aboveground and belowground plant parts responded differently. The acidity of acid rain and acid rain interval had direct modulation effects on plant growth. We also found that there were interactions between acid rain pH and other acid rain characteristics (i.e., acid rain interval, mole ratio of S:N, and acid rain rate) and experimental characteristics (i.e., initial soil pH and plant exposure part), indicating that there were pH-dependent interaction patterns. Thus, an effective approach to evaluate and predict the effects of acid rain on plant growth is to fully consider the direct effects of acid rain pH and the interactions between acid rain pH and other factors.
Assuntos
Chuva Ácida , Ecossistema , Desenvolvimento Vegetal , Plantas , SoloRESUMO
The impacts of microplastics on the gut microbiota, a crucial component of the health of aquatic animals, remain inadequately understood. This phylogenetically controlled meta-analysis aims to identify general patterns of microplastic effects on the alpha diversity (richness and Shannon index), beta diversity, and community structure of gut microbiota in aquatic animals. Data from 63 peer-reviewed articles on the Web of Science were synthesized, encompassing 424 observations across 31 aquatic species. The analysis showed that microplastics significantly altered the community structure of gut microbiota, with between-group distances being 87.75% higher than within-group distances. This effect was significant even at environmentally relevant concentrations (≤1 mg L-1). However, their effects on richness, Shannon index, and beta diversity (community variation) were found to be insignificant. The study also indicated that the effects of microplastics were primarily dependent on their concentration and size, while the phylogeny of tested species explained limited heterogeneity. Furthermore, variations in gut microbiota alpha diversity, beta diversity, and community structure were correlated with changes in antioxidant enzyme activities from the liver and hepatopancreas. This implies that gut microbiota attributes of aquatic animals may provide insights into host antioxidant levels. In summary, this study illuminates the impacts of microplastics on the gut microbiota of aquatic animals and examines the implications of these effects for host health. It emphasizes that microplastics mainly alter the community structure of gut microbiota rather than significantly affecting richness and diversity.
Assuntos
Microbioma Gastrointestinal , Microplásticos , Poluentes Químicos da Água , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Organismos Aquáticos/efeitos dos fármacos , BiodiversidadeRESUMO
In heavy metal-contaminated areas, the simultaneous occurrence of increasing microplastic pollution and persistent acid rain poses a serious threat to food security. However, the mechanisms of combined exposure to microplastics (MP) and acid rain (AR) on the toxicity of cadmium (Cd) in rice seedlings remain unclear. Our study investigated the combined effects of exposure to polyvinyl chloride microplastics and AR (pH 4.0) on the toxicity of Cd (0.3, 3, and 10 mg/L) in rice seedlings. The results showed that at low Cd concentrations, the combined exposure had no significant effect, but at high Cd concentrations, it alleviated the effects of Cd stress. The combined application of MP and AR alleviated the inhibitory effects of Cd on seedling growth and chlorophyll content. Under high Cd concentrations (10 mg/L), the simultaneous addition of MP and AR significantly reduced the production of reactive oxygen species (ROS), the content of malondialdehyde (MDA), and the activity of the superoxide dismutase (SOD). Compared with AR or MP alone, the combination of MP and AR reduced root cell damage and Cd accumulation in rice seedlings. Transcriptomic analysis confirmed that under high Cd concentrations, the combination of MP and AR altered the expression levels of genes related to Cd transport, uptake, MAPK kinase, GSTs, MTs, and transcription factors, producing a synergistic effect on oxidative stress and glutathione metabolism. These results indicate that co-exposure to MP and AR affected the toxicity of Cd in rice seedlings and alleviated Cd toxicity under high Cd concentrations to some extent. These findings provide a theoretical basis for evaluating the toxicological effects of microplastic and acid rain pollution on crop growth in areas contaminated with heavy metals, and are important for safe agricultural production and ecological security.
Assuntos
Chuva Ácida , Cádmio , Microplásticos , Oryza , Plântula , Poluentes do Solo , Oryza/efeitos dos fármacos , Oryza/genética , Plântula/efeitos dos fármacos , Cádmio/toxicidade , Chuva Ácida/toxicidade , Microplásticos/toxicidade , Poluentes do Solo/toxicidade , Transcriptoma/efeitos dos fármacos , Perfilação da Expressão GênicaRESUMO
Pomacea canaliculata, as an invasive exotic species in Asia, can adversely affect crop yields, eco-environment, and human health. Application of molluscicides containing metaldehyde is one effective method for controlling P. canaliculata. In order to investigate the effects of metaldehyde on adult snails, we conducted acute toxicological experiments to investigate the changes in enzyme activities and histopathology after 24 h and 48 h of metaldehyde action. The results showed that the median lethal concentrations (LC) of metaldehyde on P. canaliculata were 3.792, 2.195, 1.833, and 1.706 mg/L at exposure times of 24, 48, 72, and 96 h, respectively. Treatment and time significantly affected acetylcholinesterase (AChE), glutathione S-transferase (GST), and total antioxidant capacity (TAC) activity, with sex significantly affecting AChE, GST, and TAC activity and time significantly affecting carboxylesterase (CarE). In addition, the interaction of treatment and time significantly affected the activity of GST, CarE and TAC. In addition, histopathological changes occurred in the digestive glands, gills and gastropods of apple snail exposed to metaldehyde. Histological examination of the digestive glands included atrophy of the digestive cells, widening of the hemolymph gap, and an increase in basophils. In treated snails, the hemolymph gap in the gills was widely dilated, the columnar cells were disorganized or even necrotic, and the columnar muscle cells in the ventral foot were loosely arranged and the muscle fibers reduced. The findings of this study can provide some references for controlling the toxicity mechanism of invasive species.
RESUMO
Growing evidence has suggested a strong link between gut microbiota and host fitness, yet our understanding of the assembly mechanisms governing gut microbiota remains limited. Here, we collected invasive and native freshwater snails coexisting at four independent sites in Guangdong, China. We used high-throughput sequencing to study the assembly processes of their gut microbiota. Our results revealed significant differences in the diversity and composition of gut microbiota between invasive and native snails. Specifically, the gut microbiota of invasive snails exhibited lower alpha diversity and fewer enriched bacteria, with a significant phylogenetic signal identified in the microbes that were enriched or depleted. Both the phylogenetic normalized stochasticity ratio (pNST) and the phylogenetic-bin-based null model analysis (iCAMP) showed that the assembly process of gut microbiota in invasive snails was more deterministic compared with that in native snails, primarily driven by homogeneous selection. The linear mixed-effects model revealed a significant negative correlation between deterministic processes (homogeneous selection) and alpha diversity of snail gut microbiota, especially where phylogenetic diversity explained the most variance. This indicates that homogeneous selection acts as a filter by the host for specific microbial lineages, constraining the diversity of gut microbiota in invasive freshwater snails. Overall, our study suggests that deterministic assembly-mediated lineage filtering is a potential mechanism for maintaining the diversity of gut microbiota in freshwater snails.
RESUMO
BACKGROUND: The invasive freshwater snail Pomacea canaliculata is an agricultural pest with a certain level of tolerance to abiotic stress. After the harvest of late rice, the snails usually burrow themselves into the soil surface layers to overwinter and pose a renewed threat to rice production in the following year. Revealing the response of snails to environmental stresses is crucial for developing countermeasures to control their damage and spread. RESULTS: In this study, we conducted a 120-day in situ experiment during the winter to investigate the survival and physiological changes of hibernating snails in 0-5 and 5-10 cm soil depths, aiming to explore their overwintering strategies. Our results showed that 73.61%, 87.50%, and 90.28% of male, female, and juvenile snails survived after hibernation for 120 days in 0-10 cm soil depth, respectively. The differences in survival rates based on sex and size of snails potentially reflect the countermeasures of snails to rapidly reproduce after hibernation. Simultaneously, the hibernating snails exhibited the ability to maintain a certain level of body weight. During this period, the snails increased their antioxidant enzyme activities to cope with oxidative stress, and enhanced their lipid storage. The hibernation survival of snails was not significantly affected by different soil depths, indicating that they have the potential to hibernate into deeper soils. Furthermore, snails were capable of increasing their contents of bound water and glycerol to cope with sudden cold spells during hibernation. CONCLUSION: Our findings emphasize the adaptive changes of P. canaliculata snails overwintering in paddy soils. In future studies, the vulnerabilities of P. canaliculata during hibernation (e.g. shell characteristics, nutrient reserves, and dehydration tolerance, etc.,) should be investigated to develop effective control methods for this period. © 2024 Society of Chemical Industry.
Assuntos
Tamanho Corporal , Hibernação , Espécies Introduzidas , Oryza , Caramujos , Solo , Animais , Caramujos/fisiologia , Hibernação/fisiologia , Solo/química , Oryza/fisiologia , Oryza/crescimento & desenvolvimento , Feminino , China , Masculino , Fatores Sexuais , Estações do AnoRESUMO
As the frequency of droughts increases with climate change, the tolerance of aquatic organisms to abiotic stressors will become critical determinants of survival. Pomacea canaliculata has become a widely distributed agricultural and environmental pest in southern China. To evaluate their tolerance and adaptation under the drought condition, the survival, feeding, behavior, and antioxidant system changes in female and male P. canaliculata were investigated during drought stress and rewatering process through an indoor simulation experiment. The results showed that female snails laid eggs before burrowing into the soil to ensure offspring reproduction. Female P. canaliculata had higher survival rates than males under drought stress, and their recovery ability of activity after rewatering was also superior to those of males. The antioxidant system of P. canaliculata showed obvious activation with gender differences after rewatering. Overall, the survival rate of female P. canaliculata was higher after drought stress, and the resilience ability of female snails after rewatering was stronger, including in their behavior, feeding, and antioxidant system recovery. The P. canaliculata tolerance to drought and the ability to recover quickly after drought may contribute to their long-term survival and facilitate continuous invasion.
RESUMO
Microplastics (MPs) are regarded as potential persistent organic pollutants owing to their small size and low degradability. However, the effect of MP pollution on greenhouse gas (GHG) emissions from farmland soil is yet unclear. Therefore, a series of microcosm experiments were set up using polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), polystyrene (PS), and polyester (PET) at concentrations of 0.25 %, 2 %, and 7 % (w/w). Each treatment had three replicates. This experiment was carried out to verify the effect of MP pollution on greenhouse gas (GHG) emissions from farmland soil. The results showed that the addition of MPs significantly promoted the emissions of the three main GHGs, including nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4). Especially, PE may cause most GHG emissions which would contribute to climate warming when its pollution concentration increased. In addition, different doses and types of MPs could affect microbial community structure. These findings of this present study may provide a scientific and practical reference for the prevention and control of MPs pollution and risk assessment of global climate change caused by MPs.
Assuntos
Gases de Efeito Estufa , Microbiota , Gases de Efeito Estufa/análise , Solo/química , Microplásticos , Plásticos , Fazendas , Dióxido de Carbono/análise , Óxido Nitroso/análise , Metano/análise , PolietilenoRESUMO
As a global pollution, acid rain can significantly alter soil physicochemical and biochemical processes, but our knowledge of how acid rain affects soil enzyme activity is still limited. To quantify the overall magnitude and direction of the response of soil enzyme activity to acid rain, we conducted a linear mixed model-based meta-analysis of 40 articles. Our analysis revealed that acid rain decreased enzyme activity by an average of 4.87%. Soil dehydrogenase and protease activities were particularly sensitive to acid rain, with significant inhibitions observed. The effect of acid rain was moderated by acid rain intensity (i.e., H+ addition rate, total H+ added, and acid rain pH) and soil fraction (i.e., rhizosphere and bulk soil). Structural equation modelling further revealed that acid rain suppressed soil microbial biomass by acidifying the soil and that the reduction in microbial biomass directly led to the inhibition of enzyme activity in bulk soil. However, the enzyme activity in the rhizosphere soil was not affected by acid rain due to the rhizosphere effect, which was also not impacted by the decreased soil pH induced by acid rain in rhizosphere. Our study gives an insight into how bulk soil enzyme activity is impacted by acid rain and highlights the need to incorporate rhizosphere processes into acid rain-terrestrial ecosystem models.
Assuntos
Chuva Ácida , Chuva Ácida/análise , Ecossistema , Solo/química , Microbiologia do Solo , RizosferaRESUMO
Antibiotic contamination in water has been an increasing global concern, and how to effectively remove antibiotics (e.g., oxytetracycline [OTC] hydrochloride) from wastewater becomes imperative. In this study, the biochar derived from an invasive plant (Mikania micrantha Kunth) was synthesized with Zn/Fe- layered double hydroxide (LDH) by co-precipitation method (ZnFe-LDH/MBC) to remove OTC from water. ZnFe-LDH/MBC posed the highest OTC removal performance of 426.61 mg/g. ZnFe-LDH/MBC exhibited stability and efficiency in OTC adsorption at different pH levels and under interfering conditions with co-existing ions, as well as outstanding regeneration capabilities during adsorption-desorption cycles. Furthermore, the removal of OTC by ZnFe-LDH/MBC was mediated by several processes including pore filling, hydrogen bonding force, electrostatic interaction, π-π interaction, as well as complexation. Consequently, ZnFe-LDH/MBC has excellent potential for the purification of OTC pollutants that is low-cost, efficient, and environmentally friendly.
Assuntos
Mikania , Oxitetraciclina , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Hidróxidos , Cinética , Oxitetraciclina/análise , Águas Residuárias , Água , Poluentes Químicos da Água/análise , ZincoRESUMO
Additives are considered a promising approach to accelerate the composting process and alleviate the dissemination of pollutants to the environment. However, nearly all previous articles have focused on the impact of additive amounts on the reduction of HMs, which may not fully represent the main factor shaping HMs bioavailability status during composting. Simultaneously, previous reviews only explored the impacts, speciation, and toxicity mechanism of HMs during composting. Hence, a global-scale meta-analysis was conducted to investigate the response patterns of HMs bioavailability and compost parameters to different additives, composting duration, and composting factors (additive types, feedstock, bulking agents, and composting methods) by measuring the weighted mean values of the response ratio "[ln (RR)]" and size effect (%). The results revealed that additives significantly lessened HMs bioavailability by ≥ 40% in the final compost products than controls. The bioavailability decline rates were -40%, -60%, -57%, -55%, -42%, and -44% for Zn, Pb, Ni, Cu, Cr, and Cd. Simultaneously, additives significantly improved the total nitrogen (TN) (+16%), pH (+5%), and temperature (+5%), and decreased total organic carbon (TOC) (-17%), moisture content (MC) (-18%), and C/N ratio (-19%). Furthermore, we found that the prolongation of composting time significantly promoted the effect of additives on declining HMs bioavailability (p < 0.05). Nevertheless, increasing additive amounts revealed an insignificant impact on decreasing the HMs bioavailability (p > 0.05). Eventually, using zeolite as an additive, chicken manure as feedstock, sawdust as a bulking agent, and a reactor as composting method had the most significant reduction effect on HMs bioavailability (p < 0.05). The findings of this meta-analysis may contribute to the selection, modification, and application of additives and composting factors to manage the level of bioavailable HMs in the compost products.