Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 13(3): e1006631, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28346465

RESUMO

Septins are critical for numerous cellular processes through the formation of heteromeric filaments and rings indicating the importance of structural regulators in septin assembly. Several posttranslational modifications (PTMs) mediate the dynamics of septin filaments in yeast. However, little is known about the role of PTMs in regulating mammalian septin assembly, and the in vivo significance of PTMs on mammalian septin assembly and function remains unknown. Here, we showed that SEPT12 was phosphorylated on Ser198 using mass spectrometry, and we generated SEPT12 phosphomimetic knock-in (KI) mice to study its biological significance. The homozygous KI mice displayed poor male fertility due to deformed sperm with defective motility and loss of annulus, a septin-based ring structure. Immunohistochemistry of KI testicular sections suggested that SEPT12 phosphorylation inhibits septin ring assembly during annulus biogenesis. We also observed that SEPT12 was phosphorylated via PKA, and its phosphorylation interfered with SEPT12 polymerization into complexes and filaments. Collectively, our data indicate that SEPT12 phosphorylation inhibits SEPT12 filament formation, leading to loss of the sperm annulus/septin ring and poor male fertility. Thus, we provide the first in vivo genetic evidence characterizing importance of septin phosphorylation in the assembly, cellular function and physiological significance of septins.


Assuntos
Infertilidade Masculina/genética , Septinas/genética , Motilidade dos Espermatozoides/genética , Espermatozoides/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Células HEK293 , Humanos , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Mutação , Fosforilação , Septinas/metabolismo , Homologia de Sequência de Aminoácidos , Serina/genética , Serina/metabolismo , Espermatozoides/ultraestrutura
2.
PLoS One ; 10(7): e0132583, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26147666

RESUMO

Vascular remodelling is a critical vasculopathy found in atheromatous diseases and allograft failures. The local renin angiotensin system (RAS) has been implicated in vascular remodelling. However, the mechanisms by which the augmented local RAS is associated with the initial event of endothelial cell apoptosis in injured vasculature remain undefined. We induced the apoptosis of human umbilical vein endothelial cells (HUVECs) and vascular smooth muscle cells (VSMCs) through serum starvation (SS). After the cells were subjected to SS, we found that the mRNA expression of angiotensinogen (AGT) was increased by >3-fold in HUVECs and by approximately 2.5-fold in VSMCs. In addition, the expression of angiotensin-converting enzyme (ACE) mRNA was increased in VSMCs but decreased to 50% in HUVECs during the same apoptotic process. Increases in the expression of AGT protein and angiotensin II (Ang II) were found in a serum-free medium conditioned by HUVECs (SSC). The increased Ang II was suppressed using lisinopril (an ACE inhibitor) treatment. Moreover, the activation of ERK1/2 induced by the SSC in VSMCs was also suppressed by losartan. In conclusion, we first demonstrated that the augmented AGT released from apoptotic endothelial cells acts as a vital progenitor of Ang II to accelerate vascular remodelling, and we suggest that blocking local augmented Ang II might be an effective strategy for restraining intimal hyperplasia.


Assuntos
Angiotensinogênio/metabolismo , Apoptose , Células Endoteliais da Veia Umbilical Humana/metabolismo , Sistema de Sinalização das MAP Quinases , Remodelação Vascular , Angiotensina II/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Linhagem Celular , Humanos , Lisinopril/farmacologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Peptidil Dipeptidase A/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA