Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Synchrotron Radiat ; 28(Pt 1): 131-145, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399562

RESUMO

In this paper the back-side-illuminated Percival 2-Megapixel (P2M) detector is presented, along with its characterization by means of optical and X-ray photons. For the first time, the response of the system to soft X-rays (250 eV to 1 keV) is presented. The main performance parameters of the first detector are measured, assessing the capabilities in terms of noise, dynamic range and single-photon discrimination capability. Present limitations and coming improvements are discussed.

2.
Med Phys ; 36(4): 1098-108, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19472614

RESUMO

The purpose of this work was to evaluate potential advantages and limitations of CZT detectors used in surface-on, edge-on, and tilted angle irradiation geometries. Simulations and experimental investigations of the energy spectrum measured by a CZT detector have been performed using different irradiation geometries of the CZT. Experiments were performed using a CZT detector with 10 x 10 mm2 size and 3 mm thickness. The detector was irradiated with collimated photon beams from Am-241 (59.5 keV) and Co-57 (122 keV). The edge-scan method was used to measure the detector response function in edge-on illumination mode. The tilted angle mode was investigated with the radiation beam directed to the detector surface at angles of 90 degrees, 15 degrees, and 10 degrees. The Hecht formalism was used to simulate theoretical energy spectra. The parameters used for simulations were matched to experiment to compare experimental and theoretical results. The tilted angle CZT detector suppressed the tailing of the spectrum and provided an increase in peak-to-total ratio from 38% at 90 degrees to 83% at 10 degrees tilt angle for 122 keV radiation. The corresponding increase for 59 keV radiation was from 60% at 90 degrees to 85% at 10 degrees tilt angle. The edge-on CZT detector provided high energy resolution when the beam thickness was much smaller than the thickness of CZT. The FWHM resolution in edge-on illumination mode was 4.2% for 122 keV beam with 0.3 mm thickness, and rapidly deteriorated when the thickness of the beam was increased. The energy resolution of surface-on geometry suffered from strong tailing effect at photon energies higher than 60 keV. It is concluded that tilted angle CZT provides high energy resolution but it is limited to a 1D linear array configuration. The surface-on CZT provides 2D pixel arrays but suffers from tailing effect and charge build up. The edge-on CZT is considered suboptimal as it requires small beam thickness and also suffers from charge buildup.


Assuntos
Compostos de Cádmio/química , Telúrio/química , Zinco/química , Algoritmos , Simulação por Computador , Eletrônica , Desenho de Equipamento , Modelos Estatísticos , Fótons , Radiometria/instrumentação , Semicondutores
3.
Med Phys ; 36(11): 5107-19, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19994521

RESUMO

PURPOSE: The purpose of this work was to investigate the effect of characteristic x rays on the performance of photon counting detectors for multienergy x-ray imaging. X-ray and CT systems with photon counting detectors have compelling advantages compared to energy integrating detectors, and cadmium zinc telluride (CZT) detector is the detector of choice. However, current CZT detectors exhibit several limitations that hamper their practical applications. These limitations include hole trapping, high leakage current, and charge sharing between detector pixels. Charge sharing occurs due to the diffusion of charge when it drifts toward the pixel electrodes. It also occurs due to nonlocal reabsorption of characteristic and scattered x rays created in the detector volume. Hole trapping, leakage current, and charge diffusion may potentially have technical solutions. Characteristic x-ray escape and scatter, however, are fundamental in nature and cannot be easily addressed. The x-ray scatter in the CZT material is small at photon energies used in x-ray imaging. Therefore, the remaining major factor is characteristic x ray. METHODS: Monte Carlo simulations were used for this study. An experimental photon counting multienergy x-ray imaging system was used to compare simulations to experimental results. An x-ray spectrum at 120 kVp tube voltage was used. The x-ray energy range was split into five subregions (energy bins) and Monte Carlo simulations were performed at average x-ray energies corresponding to these energy bins. The detector pixel size was changed within the 0.1-1 mm range, which covered all possible applications including radiography and CT imaging. The pixel shapes included square and strip pixels. For strip pixels, tilted angle irradiation of the CZT detector was also investigated. RESULTS: The characteristic x rays escaped the pixels in approximately 70% of all x-ray interactions for the smallest pixel size of 0.1 mm. The escape fraction decreased to 20% for the largest pixel size of 1 mm. All escape fractions, for all pixel sizes, at five energies, for square and strip pixels, and at three tilt angles were calculated and presented in tables. Simulated and measured spectra at 120 kVp were compared. CONCLUSIONS: Characteristic x-ray escape deteriorates energy and spatial resolution, particularly for small pixel sizes. Correction methods should be developed based on the results of the simulations and experimental study.


Assuntos
Fótons , Radiografia/instrumentação , Radiometria/instrumentação , Radiometria/métodos , Raios X , Cádmio , Simulação por Computador , Elétrons , Método de Monte Carlo , Telúrio , Tomografia Computadorizada por Raios X/instrumentação , Zinco
4.
Phys Med Biol ; 54(16): 4971-92, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19641240

RESUMO

The signal-to-noise ratio (SNR) in x-ray imaging can be increased using a photon counting detector which could allow for rejecting electronics noise and for weighting x-ray photons according to their energies. This approach, however, was not feasible for a long time because photon counting x-ray detectors with very high count rates, good energy resolution and a large number of small pixels were required. These problems have been addressed with the advent of new detector materials, fast readout electronics and powerful computers. In this work, we report on the experimental evaluation of projection x-ray imaging with a photon counting cadmium-zinc-telluride (CZT) detector with energy resolving capabilities. The detector included two rows of pixels with 128 pixels per row with 0.9 x 0.9 mm(2) pixel size, and a 2 Mcount pixel(-1) s(-1) count rate. The x-ray tube operated at 120 kVp tube voltage with 2 mm Al-equivalent inherent filtration. The x-ray spectrum was split into five regions, and five independent x-ray images were acquired at a time. These five quasi-monochromatic x-ray images were used for x-ray energy weighting and material decomposition. A tissue-equivalent phantom was used including contrast elements simulating adipose, calcifications, iodine and air. X-ray energy weighting improved the SNR of calcifications and iodine by a factor of 1.32 and 1.36, respectively, as compared to charge integrating. Material decomposition was performed by dual energy subtraction. The low- and high-energy images were generated in the energy ranges of 25-60 keV and 60-120 keV, respectively, by combining five monochromatic image data into two. X-ray energy weighting was applied to low- and high-energy images prior to subtraction, and this improved the SNR of calcifications and iodine in dual energy subtracted images by a factor of 1.34 and 1.25, respectively, as compared to charge integrating. The detector energy resolution, spatial resolution, linearity, count rate, noise and image uniformity were investigated. The limitations of this technology were emphasized and possible solutions were discussed.


Assuntos
Fótons , Compostos de Cádmio , Modelos Lineares , Imagens de Fantasmas , Telúrio , Raios X , Zinco
5.
Phys Med Biol ; 53(5): 1475-95, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18296774

RESUMO

The feasibility of computed tomography (CT) with energy-resolved x-ray detection has been investigated. A breast CT design with multi slit multi slice (MSMS) data acquisition was used for this study. The MSMS CT includes linear arrays of photon counting detectors separated by gaps. This CT configuration allows for efficient scatter rejection and 3D data acquisition. The energy-resolved CT images were simulated using a digital breast phantom and the design parameters of the proposed MSMS CT. The phantom had 14 cm diameter and 50/50 adipose/glandular composition, and included carcinoma, adipose, blood, iodine and CaCO3 as contrast elements. The x-ray technique was 90 kVp tube voltage with 660 mR skin exposure. Photon counting, charge (energy) integrating and photon energy weighting CT images were generated. The contrast-to-noise (CNR) improvement with photon energy weighting was quantified. The dual energy subtracted images of CaCO3 and iodine were generated using a single CT scan at a fixed x-ray tube voltage. The x-ray spectrum was electronically split into low- and high-energy parts by a photon counting detector. The CNR of the energy weighting CT images of carcinoma, blood, adipose, iodine, and CaCO3 was higher by a factor of 1.16, 1.20, 1.21, 1.36 and 1.35, respectively, as compared to CT with a conventional charge (energy) integrating detector. Photon energy weighting was applied to CT projections prior to dual energy subtraction and reconstruction. Photon energy weighting improved the CNR in dual energy subtracted CT images of CaCO3 and iodine by a factor of 1.35 and 1.33, respectively. The combination of CNR improvements due to scatter rejection and energy weighting was in the range of 1.71-2 depending on the type of the contrast element. The tilted angle CZT detector was considered as the detector of choice. Experiments were performed to test the effect of the tilting angle on the energy spectrum. Using the CZT detector with 20 degrees tilting angle decreased the tailing of the measured x-ray spectrum as compared to a conventional CZT detector. It was concluded that the energy-resolved MSMS CT with tilted angle CZT detector is potentially feasible and could provide a unique combination of photon counting, energy weighting, scatter rejection and single kVp dual energy subtraction CT imaging.


Assuntos
Tomografia Computadorizada por Raios X/métodos , Artefatos , Mama/patologia , Estudos de Viabilidade , Fótons
6.
Phys Med Biol ; 53(20): 5595-613, 2008 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-18799830

RESUMO

First experimental results with energy-resolved computed tomography (CT) are reported. The contrast-to-noise ratio (CNR) in CT has been improved with x-ray energy weighting for the first time. Further, x-ray energy weighting improved the CNR in material decomposition CT when applied to CT projections prior to dual-energy subtraction. The existing CT systems use an energy (charge) integrating x-ray detector that provides a signal proportional to the energy of the x-ray photon. Thus, the x-ray photons with lower energies are scored less than those with higher energies. This underestimates contribution of lower energy photons that would provide higher contrast. The highest CNR can be achieved if the x-ray photons are scored by a factor that would increase as the x-ray energy decreases. This could be performed by detecting each x-ray photon separately and measuring its energy. The energy selective CT data could then be saved, and any weighting factor could be applied digitally to a detected x-ray photon. The CT system includes a photon counting detector with linear arrays of pixels made from cadmium zinc telluride (CZT) semiconductor. A cylindrical phantom with 10.2 cm diameter made from tissue-equivalent material was used for CT imaging. The phantom included contrast elements representing calcifications, iodine, adipose and glandular tissue. The x-ray tube voltage was 120 kVp. The energy selective CT data were acquired, and used to generate energy-weighted and material-selective CT images. The energy-weighted and material decomposition CT images were generated using a single CT scan at a fixed x-ray tube voltage. For material decomposition the x-ray spectrum was digitally spilt into low- and high-energy parts and dual-energy subtraction was applied. The x-ray energy weighting resulted in CNR improvement of calcifications and iodine by a factor of 1.40 and 1.63, respectively, as compared to conventional charge integrating CT. The x-ray energy weighting was also applied to low- and high-energy CT projections used for material decomposition. This improved the CNR in images of decomposed calcification and iodine by a factor of 1.57 and 1.46, respectively, as compared to conventional charge integrating CT. Some limitations were observed due to hole trapping in CZT and charge sharing between the detector pixels. First experimental results demonstrate that energy-resolved CT is coming close to its practical applications. Although hole trapping and charge sharing in CZT deteriorates x-ray spectrum and limits CNR improvement with energy weighting and detector count rate, this problem has a feasible solution, which is discussed in this paper and is a matter of ongoing research.


Assuntos
Intensificação de Imagem Radiográfica/instrumentação , Interpretação de Imagem Radiográfica Assistida por Computador/instrumentação , Radiometria/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Imagens de Fantasmas , Fótons , Projetos Piloto , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
Med Phys ; 33(7): 2598-609, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16898464

RESUMO

The delivery accuracy of radiation therapy for pulmonary and abdominal tumors suffers from tumor motion due to respiration. Respiratory gating should be applied to avoid the use of a large target volume margin that results in a substantial dose to the surrounding normal tissue. Precise respiratory gating requires the exact spatial position of the tumor to be determined in real time during treatment. Usually, fiducial markers are implanted inside or next to the tumor to provide both accurate patient setup and real-time tumor tracking. However, current tumor tracking systems require either substantial x-ray exposure to the patient or large fiducial markers that limit the value of their application for pulmonary tumors. We propose a real-time tumor tracking system using implanted positron emission markers (PeTrack). Each marker will be labeled with low activity positron emitting isotopes, such as 124I, 74As, or 84Rb. These isotopes have half-lives comparable to the duration of radiation therapy (from a few days to a few weeks). The size of the proposed PeTrack marker will be 0.5-0.8 mm, which is approximately one-half the size of markers currently employed in other techniques. By detecting annihilation gammas using position-sensitive detectors, multiple positron emission markers can be tracked in real time. A multimarker localization algorithm was developed using an Expectation-Maximization clustering technique. A Monte Carlo simulation model was developed for the PeTrack system. Patient dose, detector sensitivity, and scatter fraction were evaluated. Depending on the isotope, the lifetime dose from a 3.7 MBq PeTrack marker was determined to be 0.7-5.0 Gy at 10 mm from the marker. At the center of the field of view (FOV), the sensitivity of the PeTrack system was 240-320 counts/s per 1 MBq marker activity within a 30 cm thick patient. The sensitivity was reduced by 45% when the marker was near the edge of the FOV. The scatter fraction ranged from 12% (124I, 74As) to 16% (84Rb). In addition, four markers (labeled with 124I) inside a 30 cm diameter water phantom were simulated to evaluate the feasibility of the multimarker localization algorithm. Localization was considered successful if a marker was localized to within 2 mm from its true location. The success rate of marker localization was found to depend on the number of annihilation events used and the error in the initial estimate of the marker position. By detecting 250 positron annihilation events from 4 markers (average of 62 events per marker), the marker success rates for initial errors of +/-5, +/-10, and +/-15 mm were 99.9%, 99.6%, and 92.4%, respectively. Moreover, the average localization error was 0.55 (+/-0.27) mm, which was independent of initial error. The computing time for localizing four markers was less than 20 ms (Pentium 4, 2.8 GHz processor, 512 MB memory). In conclusion, preliminary results demonstrate that the PeTrack technique can potentially provide real-time tumor tracking with low doses associated with the marker's activity. Furthermore, the small size of PeTrack markers is expected to facilitate implantation and reduce patient risk.


Assuntos
Neoplasias/radioterapia , Próteses e Implantes , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Braquiterapia/instrumentação , Braquiterapia/métodos , Simulação por Computador , Humanos , Método de Monte Carlo , Movimento , Aceleradores de Partículas , Imagens de Fantasmas , Espalhamento de Radiação , Sensibilidade e Especificidade , Software , Fatores de Tempo
8.
Phys Med Biol ; 51(17): 4267-87, 2006 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16912381

RESUMO

X-ray imaging with a photon counting/energy weighting detector can provide the highest signal to noise ratio (SNR). Scanning slit/multi-slit x-ray image acquisition can provide a dose-efficient scatter rejection, which increases SNR. Use of a photon counting/energy weighting detector in a scanning slit/multi-slit acquisition geometry could provide highest possible dose efficiency in x-ray and CT imaging. Currently, the most advanced photon counting detector is the cadmium zinc telluride (CZT) detector, which, however, is suboptimal for energy resolved x-ray imaging. A tilted angle CZT detector is proposed in this work for applications in photon counting/energy weighting x-ray and CT imaging. In tilted angle configuration, the x-ray beam hits the surface of the linear array of CZT crystals at a small angle. This allows the use of CZT crystals of a small thickness while maintaining the high photon absorption. Small thickness CZT detectors allow for a significant decrease in the polarization effect in the CZT volume and an increase in count rate. The tilted angle CZT with a small thickness also provides higher spatial and energy resolution, and shorter charge collection time, which potentially enables fast energy resolving x-ray image acquisition. In this work, the major performance parameters of the tilted angle CZT detector, including its count rate, spatial resolution and energy resolution, were evaluated. It was shown that for a CZT detector with a 0.7 mm thickness and 13 degrees tilting angle, the maximum count rate can be increased by 10.7 times, while photon absorption remains >90% at photon energies up to 120 keV. Photon counting/energy weighting x-ray imaging using a tilted angle CZT detector was simulated. SNR improvement due to optimal photon energy weighting was 23% and 14% when adipose contrast element, inserted in soft tissue with 10 cm and 20 cm thickness, respectively, was imaged using 5 energy bins and weighting factors optimized for the adipose. SNR improvement was 42% and 31% when CaCO(3) contrast element, inserted in soft tissue with 10 cm and 20 cm thickness, respectively, was imaged using 5 energy bins and weighting factors optimized for CaCO(3). The SNRs of the photon counting single-kVp dual-energy subtracted images of CaCO(3) and adipose were higher by 2.04 and 2.74 times, respectively, as compared to currently used dual-kVp dual-energy subtracted images. Experiments with a CZT crystal with 2 mm thickness have shown significant decrease in the tailing effect of the CZT pulse spectrum at 59 keV and 122 keV photon energies, when the tilting angle configuration was used. Finally, feasibility of the tilted angle CZT detector for photon counting cone beam breast CT imaging was demonstrated.


Assuntos
Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Radiometria/métodos , Compostos Radiofarmacêuticos , Tomografia Computadorizada por Raios X/métodos , Artefatos , Compostos de Cádmio/química , Carbonato de Cálcio/química , Humanos , Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Fótons , Radiometria/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Telúrio/química , Tomografia Computadorizada por Raios X/instrumentação , Compostos de Zinco/química
9.
Phys Med Biol ; 51(4): 963-79, 2006 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-16467590

RESUMO

Approximately 70% of acute coronary artery disease is caused by unstable (vulnerable) plaques with an inflammation of the overlying cap and high lipid content. A rupturing of the inflamed cap of the plaque results in propagation of the thrombus into the lumen, blockage of the artery and acute ischaemic syndrome or sudden death. Morphological imaging such as angiography or intravascular ultrasound cannot determine inflammation status of the plaque. A radiotracer such as 18F-FDG is accumulated in vulnerable plaques due to higher metabolic activity of the inflamed cap and could be used to detect a vulnerable plaque. However, positron emission tomography (PET) cannot detect the FDG-labelled plaques because of respiratory and heart motions, small size and low activity of the plaques. Plaques can be detected using a miniature particle (positron) detector inserted into the artery. In this work, a new detector concept is investigated for intravascular imaging of the plaques. The detector consists of a storage phosphor tip bound to the end of an intravascular catheter. It can be inserted into an artery, absorb the 18F-FDG positrons from the plaques, withdrawn from the artery and read out. Length and diameter of the storage phosphor tip can be matched to the length and the diameter of the artery. Monte Carlo simulations and experimental evaluations of coronary plaque imaging with the proposed detector were performed. It was shown that the sensitivity of the storage phosphor detector to the positrons of 18F-FDG is sufficient to detect coronary plaques with 1 mm and 2 mm sizes and 590 Bq and 1180 Bq activities in the arteries with 2 mm and 3 mm diameters, respectively. An experimental study was performed using plastic tubes with 2 mm diameter filled with an FDG solution, which simulates blood. FDG spots simulating plaques were placed over the surface of the tube. A phosphor tip was inserted into the tube and imaged the plaques. Exposure time was 1 min in all simulations and experiments. Experiments showed that detecting the coronary plaques using the proposed technique is possible. The proposed technique has the potential for fast and accurate detection of vulnerable coronary and other intravascular plaques.


Assuntos
Autorradiografia/instrumentação , Cateterismo , Doença da Artéria Coronariana/diagnóstico por imagem , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons/instrumentação , Transdutores , Autorradiografia/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Humanos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos
10.
Med Phys ; 43(3): 1385-400, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26936723

RESUMO

PURPOSE: In photon counting (PC) x-ray imaging and computed tomography (CT), the broad x-ray spectrum can be split into two parts using an x-ray filter with appropriate K-edge energy, which can improve material decomposition. Recent experimental study has demonstrated substantial improvement in material decomposition with PC CT when K-edge filtered x-rays were used. The purpose of the current work was to conduct further investigations of the K-edge filtration method using comprehensive simulation studies. METHODS: The study was performed in the following aspects: (1) optimization of the K-edge filter for a particular imaging configuration, (2) effects of the K-edge filter parameters on material decomposition, (3) trade-off between the energy bin separation, tube load, and beam quality with K-edge filter, (4) image quality of general (unsubtracted) images when a K-edge filter is used to improve dual energy (DE) subtracted images, and (5) improvements with K-edge filtered x-rays when PC detector has limited energy resolution. The PC x-ray images of soft tissue phantoms with 15 and 30 cm thicknesses including iodine, CaCO3, and soft tissue contrast materials, were simulated. The signal to noise ratio (SNR) of the contrast elements was determined in general and material-decomposed images using K-edge filters with different atomic numbers and thicknesses. The effect of the filter atomic number and filter thickness on energy separation factor and SNR was determined. The boundary conditions for the tube load and halfvalue layer were determined when the K-edge filters are used. The material-decomposed images were also simulated using PC detector with limited energy resolution, and improvements with K-edge filtered x-rays were quantified. RESULTS: The K-edge filters with atomic numbers from 56 to 71 and K-edge energies 37.4-63.4 keV, respectively, can be used for tube voltages from 60 to 150 kVp, respectively. For a particular tube voltage of 120 kVp, the Gd and Ho were the optimal filter materials to achieve highest SNR. For a particular K-edge filter of Gd and tube voltage of 120 kVp, the filter thickness 0.6 mm provided maximum SNR for considered imaging applications. While K-edge filtration improved SNR of CaCO3 and iodine by 41% and 36%, respectively, in DE subtracted images, it did not deteriorate SNR in general images. For x-ray imaging with nonideal PC detector, the positive effect of the K-edge filter was increased when FWHM energy resolution was degraded, and maximum improvement was at 60% FWHM. CONCLUSIONS: This study has shown that K-edge filtered x-rays can provide substantial improvements of material selective PC x-ray and CT imaging for nearly all imaging applications using 60-150 kVp tube voltages. Potential limitations such as tube load, beam hardening, and availability of filter material were shown to not be critical.


Assuntos
Imagens de Fantasmas , Fótons , Tomografia Computadorizada por Raios X/instrumentação , Processamento de Imagem Assistida por Computador , Razão Sinal-Ruído
11.
Med Phys ; 32(2): 427-36, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15789589

RESUMO

A concept of a photon counting cone beam CT is proposed. The system uses a new Multi Slit Multi Slice (MSMS) cone beam acquisition geometry utilizing a linear array photon counting detectors. The MSMS cone beam acquisition is a direct analogy of the scanning multislit acquisition used in projection x-ray imaging. This geometry provides a CT imaging with dose efficient scatter rejection and allows for using available photon counting detectors. The microchannel plate (MCP) detector is proposed as a linear array photon counting detector for MSMS cone beam CT system. Initial testing of the MCP detector for CT application was performed. The field of view of the prototype MCP detector is 60 mm. A delay line position encoding electronics was used. The electronics has a single channel input for evaluation of events from the entire detector field of view. This limits the system count rate at 2 x 10(5) count/s. The spatial resolution of this detector is 80 microm FWHM at 40 kVp and 200 microm FWHM at 90 kVp tube voltages. The detector noise in CT projections is less than 1 count/pixel for the 80 microm pixel size. The CT projections contain quantum-limited and scatter free signal. Images of a contrast phantom and a small animal were acquired at 50 kVp and 80 kVp tube voltages. The CT numbers for different contrast elements were calculated for a given x-ray spectrum and compared with experimental values. The quantum efficiency of the current detector is 56% at 90 kVp, which is suboptimal because of the large channel diameter (25 microm) of these MCPs. The MCPs with smaller channels and higher efficiencies are being tested. The quantum efficiency was measured to be 70% for a new MCP with 5 microm channel diameter. Design parameters of a clinically applicable photon counting MSMS cone beam CT for breast imaging was evaluated. System uses 20 cm field of view MCP detectors based on 5 microm channel MCPs and high count rate ASIC electronics. It was concluded that the MSMS cone beam CT with a photon counting MCP detector is feasible for volume breast imaging.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Mamografia/instrumentação , Fótons , Intensificação de Imagem Radiográfica/instrumentação , Radiometria/instrumentação , Tomografia Computadorizada Espiral/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Humanos , Imagens de Fantasmas , Projetos Piloto , Doses de Radiação , Intensificação de Imagem Radiográfica/métodos , Tomografia Computadorizada Espiral/métodos , Transdutores
12.
Phys Med Biol ; 50(24): 5813-27, 2005 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-16333157

RESUMO

Photon counting x-ray imaging provides efficient rejection of the electronics noise, no pulse height (Swank) noise, less noise due to optimal photon energy weighting and the possibility of energy resolved image acquisition. These advantages apply also to CT when projection data are acquired using a photon counting detector. However, photon counting detectors assign a weighting factor of 1 to all detected photons whereas the weighting factor of a charge integrating detector is proportional to the energy of the detected photon. Therefore, data collected by photon counting and charge integrating detectors represent the 'hardening' of the photon beam passed through the object differently. This affects the beam hardening artefacts in the reconstructed CT images. This work represents the first comparative evaluation of the effect of photon counting, charge integrating and energy weighting photon detectors on beam hardening artefacts in CT. Beam hardening artefacts in CT images were evaluated for 20 cm and 14 cm diameter water cylinders with bone and low contrast inserts, at 120 kVp and 90 kVp x-ray tube voltages, respectively. It was shown that charge integrating results in 1.8% less beam hardening artefacts from bone inserts (i.e., CT numbers in the 'shadow' of the bone are less by 1.8% as compared to CT numbers over the periphery of the image), as compared to photon counting. However, optimal photon energy weighting, which provides highest SNR, results in 7.7% higher beam hardening artefacts from bone inserts as compared to photon counting. The magnitude of the 'cupping' artefacts was lower by 1% for charge integrating and higher by 6.1% for energy weighting acquisitions as compared to photon counting. Only the photon counting systems provide an accurate representation of the beam hardening effect due to its flat energy weighting. Because of their energy dependent weighting factors, the charge integrating and energy weighting systems do not provide accurate representation of the beam hardening effect.


Assuntos
Simulação por Computador , Interpretação de Imagem Assistida por Computador , Fótons , Tomografia Computadorizada por Raios X , Imagens de Fantasmas
13.
Phys Med Biol ; 60(6): 2453-74, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25739788

RESUMO

The purpose of this work was experimental investigation of photon counting spectroscopic CT (PCS-CT) imaging of anatomical soft tissue with clinically relevant size. The imaging experiments were performed using a spectroscopic CT system based on CdZnTe photon counting detector with two rows of pixels, 256 pixels in each row, 1 × 1 mm(2) pixel size, and 25.6 cm detector length. The detector could split the x-ray energy spectrum to 5 regions (energy bins), and acquire 5 multi-energy (spectroscopic) CT images in a single CT scan. A sample of round shaped anatomical soft tissue of 14 cm diameter including lean and fat was used for imaging. To avoid the negative effect of anatomical noise on quantitative analysis, a spectroscopic CT phantom with tissue equivalent solid materials was used. The images were acquired at 60, 90, and 120 kVp tube voltages, and spectroscopic image series were acquired with 3 and 5 energy bins. Spectroscopic CT numbers were introduced and used to evaluate an energy selective image series. The anatomical soft tissue with 14 cm diameter was visualized with good quality and without substantial artifacts by the photon counting spectroscopic CT system. The effects of the energy bin crosstalk on spectroscopic CT numbers were quantified and analyzed. The single and double slice PCS-CT images were acquired and compared. Several new findings were observed, including the effect of soft tissue non-uniformity on image artifacts, unique status of highest energy bin, and material dependent visualization in spectroscopic image series. Fat-lean decomposition was performed using dual energy subtraction and threshold segmentation methods, and compared. Using K-edge filtered x-rays improved fat-lean decomposition as compared to conventional x-rays. Several new and important aspects of the PCS-CT were investigated. These include imaging soft tissue with clinically relevant size, single- and double-slice PCS-CT imaging, using spectroscopic CT numbers to quantify multi-energy PCS-CT images, application of K-edge filtered x-rays for improved soft tissue decomposition, and several others. The study suggests that the presented PCS-CT technology meets the requirements of a particular clinical application, i.e. dedicated breast CT.


Assuntos
Fótons , Análise Espectral/métodos , Tomografia Computadorizada por Raios X/métodos , Cádmio/química , Humanos , Imagens de Fantasmas , Radiometria/instrumentação , Radiometria/métodos , Análise Espectral/instrumentação , Telúrio/química , Tomografia Computadorizada por Raios X/instrumentação , Raios X , Zinco/química
14.
Phys Med Biol ; 60(23): 8949-75, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26539971

RESUMO

Recently, new dual energy (DE) computed tomography (CT) systems-dual source CT (DSCT) and photon counting CT (PCCT) have been introduced. Although these systems have the same clinical targets, they have major differences as they use dual and single kVp acquisitions and different x-ray detection and energy resolution concepts. The purpose of this study was theoretical and experimental comparisons of DSCT and PCCT. The DSCT Siemens Somatom Flash was modeled for simulation study. The PCCT had the same configuration as DSCT except it used a photon counting detector. The soft tissue phantoms with 20, 30, and 38 cm diameters included iodine, CaCO3, adipose, and water samples. The dose (air kerma) was 14 mGy for all studies. The low and high energy CT data were simulated at 80 kVp and 140 kVp for DSCT, and in 20-58 keV and 59-120 keV energy ranges for PCCT, respectively. The experiments used Somatom Flash DSCT system and PCCT system based on photon counting CdZnTe detector with 2 × 256 pixel configuration and 1 × 1 mm(2) pixels size. In simulated general CT images, PCCT provided higher contrast-to-noise ratio (CNR) than DSCT with 0.4/0.8 mm Sn filters. The PCCT with K-edge filter provided higher CNR than the PCCT with a Cu filter, and DSCT with 0.4 mm Sn filter provided higher CNR than the DSCT with a 0.8 mm Sn filter. In simulated DE subtracted images, CNR of the DSCT was comparable to the PCCT with a Cu filter. However, DE PCCT with Ho a K-edge filter provided 30-40% higher CNR than the DE DSCT with 0.4/0.8 mm Sn filters. The experimental PCCT provided higher CNR in general imaging compared to the DSCT. In experimental DE subtracted images, the DSCT provided higher CNR than the PCCT with a Cu filter. However, experimental CNR with DE PCCT with K-edge filter was 15% higher than in DE DSCT, which is less than 30-40% increase predicted by the simulation study. It is concluded that ideal PCCT can provide substantial advantages over ideal DSCT in CT imaging including DE subtracted CT. However, the limitations of the PCCT detector does not allow it to reach its full potential and therefore further efforts are needed to improve PCCT detectors.


Assuntos
Imagens de Fantasmas , Fótons , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/instrumentação , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Cádmio/química , Humanos , Iodo/química , Telúrio/química , Raios X , Zinco/química
15.
Med Phys ; 42(9): 5517-29, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26328999

RESUMO

PURPOSE: The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. METHODS: An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed using a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7-20 MeV) of an Elekta Infinity radiotherapy accelerator. RESULTS: Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower energies. Energy calibration plots of peak mean energy versus peak mean position of the net mean dose profiles for each of the seven electron beams followed the shape predicted by the Lorentz force law for a uniform z-component of the magnetic field, validating its being modeled as uniform (0.542 ± 0.027 T). Measured Elekta energy spectra and their peak mean energies correlated with the 0.5-cm (7-13 MeV) and the 1.0-cm (13-20 MeV) R90 spacings of the %DD curves. The full-width-half-maximum of the energy spectra decreased with decreasing peak mean energy with the exception of the 9-MeV beam, which was anomalously wide. Similarly, R80-20 decreased linearly with peak mean energy with the exception of the 9 MeV beam. Both were attributed to suboptimal tuning of the high power phase shifter for the recycled radiofrequency power reentering the traveling wave accelerator. CONCLUSIONS: The apparatus and analysis techniques of the authors demonstrated that an inexpensive, lightweight, permanent magnet electron energy spectrometer can be used for measuring the electron energy distributions of therapeutic electron beams (6-20 MeV). The primary goal of future work is to develop a real-time spectrometer by incorporating a real-time imager, which has potential applications such as beam matching, ongoing beam tune maintenance, and measuring spectra for input into Monte Carlo beam calculations.


Assuntos
Elétrons/uso terapêutico , Imãs , Aceleradores de Partículas , Radioterapia/instrumentação , Análise Espectral/instrumentação
16.
Med Phys ; 31(5): 1061-71, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15191293

RESUMO

An experimental prototype of a novel photon counting x-ray imaging system was evaluated. This system is based on an "edge-on" microchannel plate (MCP) detector and utilizes scanning slit imaging configuration. The detector is capable of photon counting, direct conversion, high spatial resolution, controllable physical charge amplification, quantum limited and scatter free operation. The detector provides a 60 mm wide field of view (FOV) and its count rate is 200 kHz for the entire FOV. The count rate of the current system is limited by the position encoding electronics, which has a single input for all events from the entire detector, and incorporates a single channel ADC with 1 micros conversion time. It is shown that the count rate can potentially be improved to clinically acceptable levels using multichannel application specific integrated circuit (ASIC) electronics and multi-slit image acquisition geometry. For a typical acquisition time used in this study, the image noise was measured to be less than the typically acceptable noise level for medical x-ray imaging. It is anticipated that the noise level will be also low after the implementation of the ASIC electronics. The quantum efficiency of the detector was measured to be 40%-56% for an energy range of 50-90 kVp for MCPs used in this study and can be improved to > 80% using MCPs with the optimized parameters. Images of resolution and anthropomorphic phantoms were acquired at an x-ray tube voltage of 50 kVp. The value of contrast transfer function for the detector was measured to be 0.5 at a spatial frequency of 5 lp/mm. The intrinsic spatial resolution of the system is 28 microm FWHM and was limited by the accuracy of the time-to-digital conversion of the position encoding electronics. Given the advantages of the edge-on MCP detector such as direct conversion and physical charge amplification, it can potentially be applied to mammography and chest radiography.


Assuntos
Análise de Falha de Equipamento/métodos , Prótons , Intensificação de Imagem Radiográfica/instrumentação , Radiografia/instrumentação , Radiometria/instrumentação , Transdutores , Desenho de Equipamento , Estudos de Viabilidade , Miniaturização , Intensificação de Imagem Radiográfica/métodos , Radiometria/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Med Phys ; 29(10): 2222-9, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12408295

RESUMO

A new method of generating beam intensity modulation filters for intensity modulated radiation therapy (IMRT) is presented. The modulator was based on a reshapable material, which is not compressible but can be deformed under pressure. A two-dimensional (2D) piston array was used to repeatedly shape the attenuating material. The material is a mixture of tungsten powder and a silicon-based binder. The linear attenuation coefficient of the material was measured to be 0.409 cm(-1) for a 6 MV x-ray beam. The maximum thickness of the physical modulator is 10.2 cm, allowing a transmission of 1.5%. A 16 x 16 square piston array was used to generate a depth pattern in the deformable attenuating material. Each piston has a cross section of 6.37 x 6.37 mm2. The modulator was placed 65 cm from the radiation source of the linear accelerator in the position of the shielding tray. At this position, each piston projects to a 1.0 x 1.0 cm2 area at the isocenter, giving a treatment field of 16 x 16 cm2. The percent depth dose curve and output factor measurement show a slight beam hardening and a 1%-4% increase in scatter fraction when 2.2-4.4 cm uniform thickness filters are in the beam. The surface dose was decreased with the filter in the beam. Ion chamber and verification films were used to verify the entrance dose. The measured absolute and relative doses were compared with the calculated dose. The agreement of measurements and calculations is within 3%. In order to verify the spatial modulation of dose, 1-D dose profiles were obtained using dose calculations. Calculated and measured profiles were compared. The 20%-80% penumbra of the modulator was measured to be 5.5-10 mm. The results show that a physical modulator formed using a 16 x 16 piston array and a deformable attenuation material can provide intensity modulation for IMRT comparable with those provided by currently available commercial MLC techniques.


Assuntos
Radioterapia Conformacional/instrumentação , Radioterapia Conformacional/métodos , Fenômenos Biofísicos , Biofísica , Aceleradores de Partículas , Radiometria , Água
18.
Acad Radiol ; 11(4): 377-89, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15109010

RESUMO

RATIONALE AND OBJECTIVES: To evaluate the feasibility and performance of an x-ray beam equalization system for chest radiography using anthropomorphic phantoms. MATERIALS AND METHODS: Area beam equalization involves the process of the initial unequalized image acquisition, attenuator thickness calculation, mask generation using a 16 x 16 piston array, and final equalized image acquisition. Chest radiographs of three different anthropomorphic phantoms were acquired with no beam equalization and equalization levels of 4.8, 11.3, and 21. Six radiologists evaluated the images by scoring them from 1-5 using 13 different criteria. The dose was calculated using the known attenuator material thickness and the mAs of the x-ray tube. RESULTS: The visibility of anatomic structures in the under-penetrated regions of the chest radiographs was shown to be significantly (P < .01) improved after beam equalization. An equalization level of 4.8 provided most of the improvements with moderate increases in patient dose and tube loading. Higher levels of beam equalization did not show much improvement in the visibility of anatomic structures in the under-penetrated regions. CONCLUSION: A moderate level of x-ray beam equalization in chest radiography is superior to both conventional radiographs and radiographs with high levels of beam equalization. X-ray beam equalization can significantly improve the visibility of anatomic structures in the under-penetrated regions while maintaining good image quality in the lung region.


Assuntos
Intensificação de Imagem Radiográfica/instrumentação , Radiografia Torácica/instrumentação , Estudos de Viabilidade , Humanos , Imagens de Fantasmas
19.
Med Phys ; 40(5): 051905, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23635275

RESUMO

PURPOSE: Photon counting spectral (PCS) computed tomography (CT) shows promise for breast imaging. An issue with current photon-counting detectors is low count rate capabilities, artifacts resulting from nonuniform count rate across the field of view, and suboptimal spectral information. These issues are addressed in part by using tissue-equivalent adaptive filtration of the x-ray beam. The purpose of the study was to investigate the effect of adaptive filtration on different aspects of PCS breast CT. METHODS: The theoretical formulation for the filter shape was derived for different filter materials and evaluated by simulation and an experimental prototype of the filter was fabricated from a tissue-like material (acrylic). The PCS CT images of a glandular breast phantom with adipose and iodine contrast elements were simulated at 40, 60, 90, and 120 kVp tube voltages, with and without adaptive filter. The CT numbers, CT noise, and contrast-to-noise ratio (CNR) were compared for spectral CT images acquired with and without adaptive filters. Similar comparison was made for material-decomposed PCS CT images. RESULTS: The adaptive filter improved the uniformity of CT numbers, CT noise, and CNR in both ordinary and material decomposed PCS CT images. At the same tube output the average CT noise with adaptive filter, although uniform, was higher than the average noise without adaptive filter due to x-ray absorption by the filter. Increasing tube output, so that average skin exposure with the adaptive filter was same as without filter, made the noise with adaptive filter comparable to or lower than that without adaptive filter. Similar effects were observed when energy weighting was applied, and when material decompositions were performed using energy selective CT data. CONCLUSIONS: An adaptive filter decreases count rate requirements to the photon counting detectors which enables PCS breast CT based on commercially available detector technologies. Adaptive filter also improves image quality in PCS breast CT by decreasing beam hardening artifacts and by eliminating spatial nonuniformities of CT numbers, noise, and CNR.


Assuntos
Mamografia/métodos , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X/métodos , Humanos , Iodo , Imagens de Fantasmas
20.
Phys Med Biol ; 57(6): 1575-93, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22397927

RESUMO

As x-ray imaging technology moves from conventional radiography and computed tomography (CT) to spectral radiography and CT, dedicated phantom materials are needed for spectral imaging. The spectral phantom materials should accurately represent the energy-dependent mass-attenuation coefficients of different types of tissues. Although tissue-equivalent phantom materials were previously developed for CT and radiation therapy applications, these materials are suboptimal for spectral radiography and CT; they are not compatible with contrast agents, do not represent many of the tissue types and do not provide accurate values of attenuation characteristics of tissue. This work provides theoretical framework and a practical method for developing tissue-equivalent spectral phantom materials with a required set of parameters. The samples of the tissue-equivalent spectral phantom materials were developed, tested and characterized. The spectral phantom materials were mixed with iodine, gold and calcium contrast agents and evaluated. The materials were characterized by CT imaging and x-ray transmission experiments. The fabricated materials had nearly identical densities, mass attenuation coefficients, effective atomic numbers and electron densities as compared to corresponding tissue materials presented in the ICRU-44 report. The experimental results have shown good volume uniformity and inter-sample uniformity (repeatability of sample fabrication) of the fabricated materials. The spectral phantom materials were fabricated under laboratory conditions from readily available and inexpensive components. It was concluded that the presented theoretical framework and fabrication method of dedicated spectral phantom materials could be useful for researchers and developers working in the new area of spectral radiography and CT. Independently, the results could also be useful for other applications, such as radiation therapy.


Assuntos
Imagens de Fantasmas , Radiografia , Tomografia Computadorizada por Raios X , Tecido Adiposo/diagnóstico por imagem , Fenômenos Biofísicos , Água Corporal/diagnóstico por imagem , Osso e Ossos/diagnóstico por imagem , Cálcio , Tecido Conjuntivo/diagnóstico por imagem , Meios de Contraste , Ouro , Humanos , Iodo , Modelos Teóricos , Imagens de Fantasmas/normas , Imagens de Fantasmas/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA