Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Vector Borne Dis ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38634366

RESUMO

Malaria is a global health problem that causes 1.5-2.7 million deaths worldwide each year. Resistance to antimalarial drugs in malaria parasites and to insecticides in vectors is one of the most serious issues in the fight against the disease. Moreover, the lack of an effective vaccine against malaria is still a major concern. Recent developments in nanotechnology have resulted in new prospects for the fight against malaria, especially by obtaining metal nanoparticles (NPs) that are less toxic, highly biocompatible, environmentally friendly, and less expensive. Numerous studies have been conducted on the synthesis of green NPs using plants and microorganisms (bacteria, fungi, algae, actinomycetes, and viruses). To our knowledge, there is no literature review that compares toxicities and antimalarial effects of some existing metallic nanoparticles revealing their advantages and disadvantages. The purpose of this review is to assess the metal NPs obtained through various green synthesis processes, to display the worth of future malaria research, and to determine future strategies. The literature review revealed that there are very limited studies on green NPs covering all stages of malaria parasites. Additionally, green metal nanoparticles have yet to be studied for their possible toxic effects on infected as well as healthy erythrocytes. Moreover, the toxicities of green metal NPs obtained from various sources differed according to concentration, size, shape, synthesis method, and surface charge, indicating the necessity of optimizing the methods used in future studies. This work has investigated the effectiveness of green metal nanoparticles synthesized from different sources against malaria, as well as their advantages and disadvantages. It was concluded that studies on the toxic properties of green nanoparticles would be very important for future stages.

2.
Turk J Pharm Sci ; 21(1): 62-70, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38529558

RESUMO

Objectives: Humans are unknowingly exposed to mycotoxins through the consumption of plant-derived foods and processed products contaminated with these toxic compounds. In addition to agricultural losses, Fusarium toxins pose a threat to human health. However, the effects of fusariotoxins on the viability and proliferation of stem cells have not been fully explored. We investigated the cytotoxic effects of deoxynivalenol (DON) and B-trichothecene mix (MIX) on mesenchymal stem cells (MSCs) and the L929 fibroblast cell line. Materials and Methods: MSCs were isolated from the dental pulp tissue. The doubling time and viability of dental pulp stem cells (DPSCs) and L929 cells were determined using the MTT assay. The following doses of B-trichothecenes (0.25-16 µg/mL; 24 hours and 48 hours) were used to evaluate cytotoxicity. In addition, changes in the confluency-dependent response of DPSCs to DON toxicity were determined. Moreover, we investigated the effect of DON on cell death via acridine orange/ethidium bromide (AO/EB) double staining. Results: A DON and MIX showed a dose- and time-dependent inhibitory effect on the proliferation of both cells. DPSCs exposed to DON for 48 hours (IC50 = 0.5 µg/mL) were found to be 16-fold more sensitive than L929 cells (IC50 = 8 µg/mL). Compared with a culture with 80% confluency, DPSCs from a 50% confluent culture were more sensitive to varying doses of DON (0.25-4 µg/mL, 24-48 hours). Moreover, AO/EB staining showed that treatment of DPSCs with DON led to a significant increase in cell death (17% for 2.4 µg/mL; 50% for 4.8 µg/mL). Conclusion: This study reveals that undifferentiated MSCs are significantly more sensitive to DON than differentiated somatic cells (L929). Given that humans are frequently exposed to these mycotoxins, our findings imply that prolonged exposure to them may also have harmful effects on cellular differentiation and embryonic development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA