Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
J Physiol ; 598(17): 3597-3612, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32495943

RESUMO

KEY POINTS: The interatrial conduction, including Bachmann's bundle, the posterior septal conduction, the anterior septal conduction, and the cavo-tricuspid isthmus, contributes to the maintenance mechanisms of atrial fibrillation in a 3D biatrial model. The interatrial conduction ablation including a cavo-tricuspid isthmus ablation significantly affects the wave dynamics of atrial fibrillation (AF) and facilitates the AF termination or atrial tachycardia conversion of the AF after the circumferential pulmonary vein isolation. Additional cavo-tricuspid isthmus ablation after the circumferential pulmonary vein isolation improves long-term rhythm outcome after clinical AF catheter ablation. ABSTRACT: Although it is known that atrial fibrillation (AF) is mainly a left atrial (LA) disease, the role of the right atrium (RA) and interatrial conduction (IAC), including the cavo-tricuspid isthmus (CTI), has not been clearly defined. We tested AF wave dynamics with or without IAC in computational modelling and the rhythm outcome of AF catheter ablation (AFCA) including CTI ablation in clinical cohort data. We evaluated the dominant frequency (DF) in 3D biatrial AF simulations integrated with 3D-computed tomograms obtained from 10 patients. The IAC was implemented at Bachmann's bundle, posterior septum and the CTI. After virtual circumferential PV isolation (CPVI), we disconnected IACs one by one, and observed the wave dynamics. We compared the long-term rhythm outcome after CPVI alone and additional CTI ablation in 846 patients with AFCA. LA-DF was higher than RA-DF in AF (P < 0.001). After CPVI, the DF decreased significantly by additional IAC ablation (P = 0.003), especially in the LA (P = 0.016). The amount of DF reduction (P = 0.020) and rates of AF termination (P < 0.001) or AT conversion (P = 0.021) were significantly higher after IAC ablations including CTI than those without. In clinical AFCA, the AF recurrence rate was significantly lower in patients with additional CTI ablation than CPVI alone during 25 ± 20 months' follow-up (hazard ratio 0.60 [0.46-0.79], P < 0.001, Log rank P < 0.001). IAC contributes to the maintenance mechanism of AF, and IAC including CTI ablation affects AF wave dynamics, facilitating AF termination in 3D biatrial modelling. Additional CTI ablation after CPVI improves the long-term rhythm outcome in clinical AFCA, potentially in a paroxysmal type with accompanying atrial flutter, or atrial dimension close to normal.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Fibrilação Atrial/cirurgia , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/cirurgia , Frequência Cardíaca , Humanos , Resultado do Tratamento
2.
PLoS Comput Biol ; 15(4): e1006765, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30951529

RESUMO

Although bipolar electrograms (Bi-egms) are commonly used for catheter mapping and ablation of cardiac arrhythmias, the accuracy and reproducibility of Bi-egms have not been evaluated. We aimed to clarify the influence of the catheter orientation (CO), catheter contact angle (CA), local conduction velocity (CV), scar size, and catheter type on the Bi-egm morphology using an in silico 3-dimensional realistic model of atrial fibrillation. We constructed a 3-dimensional, realistic, in silico left atrial model with activation wave propagation including bipolar catheter models. Bi-egms were obtained by computing the extracellular potentials from the distal and proximal electrodes. The amplitude and width were measured on virtual Bi-egms obtained under different conditions created by changing the CO according to the wave direction, catheter-atrial wall CA, local CV, size of the non-conductive area, and catheter type. Bipolar voltages were also compared between virtual and clinically acquired Bi-egms. Bi-egm amplitudes were lower for a perpendicular than parallel CO relative to the wave direction (p<0.001), lower for a 90° than 0° CA (p<0.001), and lower for a CV of 0.13m/s than 0.48m/s (p<0.001). Larger sized non-conductive areas were associated with a decreased bipolar amplitude (p<0.001) and increased bipolar width (p<0.001). Among three commercially available catheters (Orion, Pentaray, and Thermocool), those with more narrowly spaced and smaller electrodes produced higher voltages on the virtual Bi-egms (p<0.001). Multiple factors including the CO, CA, CV, and catheter design significantly influence the Bi-egm morphology. Universal voltage cut-off values may not be appropriate for bipolar voltage-guided substrate mapping.


Assuntos
Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/cirurgia , Ablação por Cateter/instrumentação , Técnicas Eletrofisiológicas Cardíacas/instrumentação , Ablação por Cateter/estatística & dados numéricos , Biologia Computacional , Simulação por Computador , Eletrodos , Técnicas Eletrofisiológicas Cardíacas/estatística & dados numéricos , Fenômenos Eletrofisiológicos , Sistema de Condução Cardíaco/fisiopatologia , Sistema de Condução Cardíaco/cirurgia , Humanos , Modelos Cardiovasculares , Reprodutibilidade dos Testes , Interface Usuário-Computador
3.
Korean J Physiol Pharmacol ; 23(5): 305-310, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31496867

RESUMO

The physiomic approach is now widely used in the diagnosis of cardiovascular diseases. There are two possible methods for cardiovascular physiome: the traditional mathematical model and the machine learning (ML) algorithm. ML is used in almost every area of society for various tasks formerly performed by humans. Specifically, various ML techniques in cardiovascular medicine are being developed and improved at unprecedented speed. The benefits of using ML for various tasks is that the inner working mechanism of the system does not need to be known, which can prove convenient in situations where determining the inner workings of the system can be difficult. The computation speed is also often higher than that of the traditional mathematical models. The limitations with ML are that it inherently leads to an approximation, and special care must be taken in cases where a high accuracy is required. Traditional mathematical models are, however, constructed based on underlying laws either proven or assumed. The results from the mathematical models are accurate as long as the model is. Combining the advantages of both the mathematical models and ML would increase both the accuracy and efficiency of the simulation for many problems. In this review, examples of cardiovascular physiome where approaches of mathematical modeling and ML can be combined are introduced.

4.
Korean J Physiol Pharmacol ; 23(1): 71-79, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30627012

RESUMO

Body surface potential map, an electric potential distribution on the body torso surface, enables us to infer the electrical activities of the heart. Therefore, observing electric potential projected to the torso surface can be highly useful for diagnosing heart diseases such as coronary occlusion. The BSPM for the heart of a patient show a higher level of sensitivity than 12-lead ECG. Relevant research has been mostly based on clinical statistics obtained from patients, and, therefore, a simulation for a variety of pathological phenomena of the heart is required. In this study, by using computer simulation, a body surface potential map was implemented according to various occlusion locations (distal, mid, proximal occlusion) in the left anterior descending coronary artery. Electrophysiological characteristics of the body surface during the ST segment period were observed and analyzed based on an ST isointegral map. We developed an integrated system that takes into account the cellular to organ levels, and performed simulation regarding the electrophysiological phenomena of the heart that occur during the first 5 minutes (stage 1) and 10 minutes (stage 2) after commencement of coronary occlusion. Subsequently, we calculated the bipolar angle and amplitude of the ST isointegral map, and observed the correlation between the relevant characteristics and the location of coronary occlusion. In the result, in the ventricle model during the stage 1, a wider area of ischemia led to counterclockwise rotation of the bipolar angle; and, during the stage 2, the amplitude increased when the ischemia area exceeded a certain size.

5.
Korean J Physiol Pharmacol ; 23(1): 63-70, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30627011

RESUMO

We aimed to propose a novel computational approach to predict the electromechanical performance of pre- and post-mitral valve cerclage annuloplasty (MVCA). Furthermore, we tested a virtual estimation method to optimize the left ventricular basement tightening scheme using a pre-MVCA computer model. The present model combines the three-dimensional (3D) electromechanics of the ventricles with the vascular hemodynamics implemented in a lumped parameter model. 3D models of pre- and post-MVCA were reconstructed from the computed tomography (CT) images of two patients and simulated by solving the electromechanical-governing equations with the finite element method. Computed results indicate that reduction of the dilated heart chambers volume (reverse remodeling) appears to be dependent on ventricular stress distribution. Reduced ventricular stresses in the basement after MVCA treatment were observed in the patients who showed reverse remodeling of heart during follow up over 6 months. In the case who failed to show reverse remodeling after MVCA, more virtual tightening of the ventricular basement diameter than the actual model can induce stress unloading, aiding in heart recovery. The simulation result that virtual tightening of the ventricular basement resulted in a marked increase of myocardial stress unloading provides in silico evidence for a functional impact of MVCA treatment on cardiac mechanics and post-operative heart recovery. This technique contributes to establishing a pre-operative virtual rehearsal procedure before MVCA treatment by using patient-specific cardiac electromechanical modeling of pre-MVCA.

6.
Circ J ; 83(1): 32-40, 2018 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-30429429

RESUMO

BACKGROUND: The arrhythmogenic role of complex atrial morphology has not yet been clearly elucidated. We hypothesized that bumpy tissue geometry can induce action potential duration (APD) dispersion and wavebreak in atrial fibrillation (AF). Methods and Results: We simulated a 2D-bumpy atrial model by varying the degree of bumpiness, and 3D-left atrial (LA) models integrated by LA computed tomographic (CT) images taken from 14 patients with persistent AF. We also analyzed wave-dynamic parameters with bipolar electrograms during AF and compared them with LA-CT geometry in 30 patients with persistent AF. In the 2D-bumpy model, APD dispersion increased (P<0.001) and wavebreak occurred spontaneously when the surface bumpiness was greater, showing phase transition-like behavior (P<0.001). The bumpiness gradient 2D-model showed that spiral wave drifted in the direction of higher bumpiness, and phase singularity (PS) points were mostly located in areas with higher bumpiness. In the 3D-LA model, PS density was higher in the LA appendage (LAA) compared with other parts of the LA (P<0.05). In 30 persistent-AF patients, the surface bumpiness of LAA was 5.8-fold that of other LA parts (P<0.001), and exceeded critical bumpiness to induce wavebreak. Wave dynamics complexity parameters were consistently dominant in the LAA (P<0.001). CONCLUSIONS: Bumpy tissue geometry promoted APD dispersion, wavebreak, and spiral wave drift in in-silico human atrial tissue, and corresponded to clinical electroanatomical maps.


Assuntos
Arritmias Cardíacas , Apêndice Atrial , Fibrilação Atrial , Modelos Cardiovasculares , Tomografia Computadorizada por Raios X , Arritmias Cardíacas/diagnóstico por imagem , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Apêndice Atrial/diagnóstico por imagem , Apêndice Atrial/patologia , Apêndice Atrial/fisiopatologia , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Humanos , Masculino
7.
Pflugers Arch ; 469(5-6): 613-628, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28353154

RESUMO

This work reviews the key aspects of coronary and neurovascular flow reserves with an emphasis on physiomic modeling characteristics by the use of a variety of numerical approaches. First, we explain the definition of fractional flow reserve (FFR) in coronary artery and introduce its clinical significance. Then, computational researches for obtaining FFR are reviewed, and their clinical outcomes are compared. In the case of cerebrovascular reserve (CVR), in spite of substantial progress in the simulation of cerebral hemodynamics, only a few computational studies exist. Thus, we discuss the limitations of CVR simulation study and suggest the challenging issue to overcome these. Also, the future direction of physiomic researches for the flow reserves in coronary arteries and cerebral arteries is described. Also, we introduce a machine learning algorithm trained by the existing physiomic simulation data of flow reserve and suggest a prospective research direction related to this.


Assuntos
Reserva Fracionada de Fluxo Miocárdico , Modelos Cardiovasculares , Acoplamento Neurovascular , Animais , Humanos , Aprendizado de Máquina
8.
Biomed Eng Online ; 16(1): 83, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28651585

RESUMO

BACKGROUND: Hemodynamic simulation for quantifying fractional flow reserve (FFR) is often performed in a patient-specific geometry of coronary arteries reconstructed from the images from various imaging modalities. Because optical coherence tomography (OCT) images can provide more precise vascular lumen geometry, regardless of stenotic severity, hemodynamic simulation based on OCT images may be effective. The aim of this study is to perform OCT-FFR simulations by coupling a 3D CFD model from geometrically correct OCT images with a LPM based on vessel lengths extracted from CAG data with clinical validations for the present method. METHODS: To simulate coronary hemodynamics, we developed a fast and accurate method that combined a computational fluid dynamics (CFD) model of an OCT-based region of interest (ROI) with a lumped parameter model (LPM) of the coronary microvasculature and veins. Here, the LPM was based on vessel lengths extracted from coronary X-ray angiography (CAG) images. Based on a vessel length-based approach, we describe a theoretical formulation for the total resistance of the LPM from a three-dimensional (3D) CFD model of the ROI. RESULTS: To show the utility of this method, we present calculated examples of FFR from OCT images. To validate the OCT-based FFR calculation (OCT-FFR) clinically, we compared the computed OCT-FFR values for 17 vessels of 13 patients with clinically measured FFR (M-FFR) values. CONCLUSION: A novel formulation for the total resistance of LPM is introduced to accurately simulate a 3D CFD model of the ROI. The simulated FFR values compared well with clinically measured ones, showing the accuracy of the method. Moreover, the present method is fast in terms of computational time, enabling clinicians to provide solutions handled within the hospital.


Assuntos
Vasos Coronários/diagnóstico por imagem , Vasos Coronários/fisiologia , Reserva Fracionada de Fluxo Miocárdico , Tomografia de Coerência Óptica , Simulação por Computador , Vasos Coronários/anatomia & histologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
Pflugers Arch ; 468(8): 1449-58, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27290616

RESUMO

Flow resistances exerted in the coronary arteries are the key parameters for the image-based computer simulation of coronary hemodynamics. The resistances depend on the anatomical characteristics of the coronary system. A simple and reliable estimation of the resistances is a compulsory procedure to compute the fractional flow reserve (FFR) of stenosed coronary arteries, an important clinical index of coronary artery disease. The cardiac muscle volume reconstructed from computed tomography (CT) images has been used to assess the resistance of the feeding coronary artery (muscle volume-based method). In this study, we estimate the flow resistances exerted in coronary arteries by using a novel method. Based on a physiological observation that longer coronary arteries have more daughter branches feeding a larger mass of cardiac muscle, the method measures the vessel lengths from coronary angiogram or CT images (vessel length-based method) and predicts the coronary flow resistances. The underlying equations are derived from the physiological relation among flow rate, resistance, and vessel length. To validate the present estimation method, we calculate the coronary flow division over coronary major arteries for 50 patients using the vessel length-based method as well as the muscle volume-based one. These results are compared with the direct measurements in a clinical study. Further proving the usefulness of the present method, we compute the coronary FFR from the images of optical coherence tomography.


Assuntos
Circulação Coronária/fisiologia , Vasos Coronários/fisiologia , Simulação por Computador , Doença da Artéria Coronariana/fisiopatologia , Coração/fisiologia , Hemodinâmica/fisiologia , Humanos , Pessoa de Meia-Idade , Miocárdio/patologia
10.
Korean J Physiol Pharmacol ; 20(1): 111-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26807030

RESUMO

Vagal nerve activity has been known to play a crucial role in the induction and maintenance of atrial fibrillation (AF). However, it is unclear how the distribution and concentration of local acetylcholine (ACh) promotes AF. In this study, we investigated the effect of the spatial distribution and concentration of ACh on fibrillation patterns in an in silico human atrial model. A human atrial action potential model with an ACh-dependent K(+) current (IKAch) was used to examine the effect of vagal activation. A simulation of cardiac wave dynamics was performed in a realistic 3D model of the atrium. A model of the ganglionated plexus (GP) and nerve was developed based on the "octopus hypothesis". The pattern of cardiac wave dynamics was examined by applying vagal activation to the GP areas or randomly. AF inducibility in the octopus hypothesis-based GP and nerve model was tested. The effect of the ACh concentration level was also examined. In the single cell simulation, an increase in the ACh concentration shortened APD90 and increased the maximal slope of the restitution curve. In the 3D simulation, a random distribution of vagal activation promoted wavebreaks while ACh secretion limited to the GP areas did not induce a noticeable change in wave dynamics. The octopus hypothesis-based model of the GP and nerve exhibited AF inducibility at higher ACh concentrations. In conclusion, a 3D in silico model of the GP and parasympathetic nerve based on the octopus model exhibited higher AF inducibility with higher ACh concentrations.

11.
Korean J Physiol Pharmacol ; 20(4): 367-78, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27382353

RESUMO

Recently, it was reported that the role of mitochondria-reactive oxygen species (ROS) generating pathway in cisplatin-induced apoptosis is remarkable. Since a variety of molecules are involved in the pathway, a comprehensive approach to delineate the biological interactions of the molecules is required. However, quantitative modeling of the mitochondria-ROS generating pathway based on experiment and systemic analysis using the model have not been attempted so far. Thus, we conducted experiments to measure the concentration changes of critical molecules associated with mitochondrial apoptosis in both human mesothelioma H2052 and their ρ(0) cells lacking mitochondrial DNA (mtDNA). Based on the experiments, a novel mathematical model that can represent the essential dynamics of the mitochondrial apoptotic pathway induced by cisplatin was developed. The kinetic parameter values of the mathematical model were estimated from the experimental data. Then, we have investigated the dynamical properties of this model and predicted the apoptosis levels for various concentrations of cisplatin beyond the range of experiments. From parametric perturbation analysis, we further found that apoptosis will reach its saturation level beyond a certain critical cisplatin concentration.

12.
Korean J Physiol Pharmacol ; 20(5): 507-14, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27610037

RESUMO

Although 3D-complex fractionated atrial electrogram (CFAE) mapping is useful in radiofrequency catheter ablation for persistent atrial fibrillation (AF), the directions and configuration of the bipolar electrodes may affect the electrogram. This study aimed to compare the spatial reproducibility of CFAE by changing the catheter orientations and electrode distance in an in-silico left atrium (LA). We conducted this study by importing the heart CT image of a patient with AF into a 3D-homogeneous human LA model. Electrogram morphology, CFAE-cycle lengths (CLs) were compared for 16 different orientations of a virtual bipolar conventional catheter (conv-cath: size 3.5 mm, inter-electrode distance 4.75 mm). Additionally, the spatial correlations of CFAE-CLs and the percentage of consistent sites with CFAE-CL<120 ms were analyzed. The results from the conv-cath were compared with that obtained using a mini catheter (mini-cath: size 1 mm, inter-electrode distance 2.5 mm). Depending on the catheter orientation, the electrogram morphology and CFAE-CLs varied (conv-cath: 11.5±0.7% variation, mini-cath: 7.1±1.2% variation), however the mini-cath produced less variation of CFAE-CL than conv-cath (p<0.001). There were moderate spatial correlations among CFAE-CL measured at 16 orientations (conv-cath: r=0.3055±0.2194 vs. mini-cath: 0.6074±0.0733, p<0.001). Additionally, the ratio of consistent CFAE sites was higher for mini catheter than conventional one (38.3±4.6% vs. 22.3±1.4%, p<0.05). Electrograms and CFAE distribution are affected by catheter orientation and electrode configuration in the in-silico LA model. However, there was moderate spatial consistency of CFAE areas, and narrowly spaced bipolar catheters were less influenced by catheter direction than conventional catheters.

13.
Biomed Eng Online ; 13(1): 35, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24708625

RESUMO

BACKGROUND: When using a pulsatile left ventricular assist device (LVAD), it is important to reduce the cardiac load variations of the native heart because severe cardiac load variations can induce ventricular arrhythmia. In this study, we investigated the effect of counter-pulsation control of the LVAD on the reduction of cardiac load variation. METHODS: A ventricular electrocardiogram-based counter-pulsation control algorithm for a LVAD was implemented, and the effects of counter-pulsation control of the LVAD on the reduction of the working load variations of the left ventricle were determined in three animal experiments. RESULTS: Deviations of the working load of the left ventricle were reduced by 51.3%, 67.9%, and 71.5% in each case, and the beat-to-beat variation rates in the working load were reduced by 84.8%, 82.7%, and 88.2% in each ease after counter-pulsation control. There were 3 to 12 premature ventricle contractions (PVCs) before counter-pulsation control, but no PVCs were observed during counter-pulsation control. CONCLUSIONS: Counter-pulsation control of the pulsatile LVAD can reduce severe cardiac load variations, but the average working load is not markedly affected by application of counter-pulsation control because it is also influenced by temporary cardiac outflow variations. We believe that counter-pulsation control of the LVAD can improve the long-term safety of heart failure patients equipped with LVADs.


Assuntos
Engenharia Biomédica/métodos , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/fisiopatologia , Coração Auxiliar , Algoritmos , Animais , Eletrocardiografia/métodos , Desenho de Equipamento , Frequência Cardíaca , Humanos , Modelos Cardiovasculares , Processamento de Sinais Assistido por Computador , Suínos
14.
J Korean Med Sci ; 29(3): 370-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24616586

RESUMO

Although complex fractionated electrogram (CFE) is known to be a target for catheter ablation of fibrillation, its physiological meaning in fibrillation wave-dynamics remains to be clarified. We evaluated the spatiotemporal relationships among the parameters of fibrillation wave-dynamics by simulation modeling. We generated maps of CFE-cycle length (CFE-CL), local dominant frequency (LDF), wave break (WB), and phase singularity (PS) of fibrillation in 2-dimensional homogeneous bidomain cardiac modeling (1,000 × 1,000 cells ten Tusscher model). We compared spatiotemporal correlations by dichotomizing each maps into 10 × 10 lattice zones. In spatial distribution, WB and PS showed excellent correlation (R = 0.963, P < 0.001). CFE-CL had weak correlations with WB (R = 0.288, P < 0.001), PS (R = 0.313, P < 0.001), and LDF (R = -0.411, P < 0.001). However, LDF did not show correlation with PS or WB. PSs were mostly distributed at the periphery of low CFE-CL area. Virtual ablation (5% of critical mass) of CFE-CL < 100 ms terminated fibrillation at 14.3 sec, and high LDF ablation (5% of critical mass) changed fibrillation to organized tachycardia, respectively. In homogeneous 2D fibrillation modeling, CFE-CL was weakly correlated with WB, PS, and LDF, spatiotemporally. PSs are mostly positioned at the periphery of low CFE-CL areas, and virtual ablation targeting low CFE-CL regions terminated fibrillation successfully.


Assuntos
Fibrilação Atrial/fisiopatologia , Eletrocardiografia , Modelos Biológicos , Algoritmos , Mapeamento Potencial de Superfície Corporal , Ablação por Cateter , Eletrodos , Átrios do Coração/fisiopatologia , Humanos
15.
J Korean Med Sci ; 28(8): 1161-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23960442

RESUMO

The current study proposes a model of the cardiovascular system that couples heart cell mechanics with arterial hemodynamics to examine the physiological role of arterial blood pressure (BP) in left ventricular hypertrophy (LVH). We developed a comprehensive multiphysics and multiscale cardiovascular model of the cardiovascular system that simulates physiological events, from membrane excitation and the contraction of a cardiac cell to heart mechanics and arterial blood hemodynamics. Using this model, we delineated the relationship between arterial BP or pulse wave velocity and LVH. Computed results were compared with existing clinical and experimental observations. To investigate the relationship between arterial hemodynamics and LVH, we performed a parametric study based on arterial wall stiffness, which was obtained in the model. Peak cellular stress of the left ventricle and systolic blood pressure (SBP) in the brachial and central arteries also increased; however, further increases were limited for higher arterial stiffness values. Interestingly, when we doubled the value of arterial stiffness from the baseline value, the percentage increase of SBP in the central artery was about 6.7% whereas that of the brachial artery was about 3.4%. It is suggested that SBP in the central artery is more critical for predicting LVH as compared with other blood pressure measurements.


Assuntos
Artérias/fisiologia , Sistema Cardiovascular/fisiopatologia , Hemodinâmica , Modelos Biológicos , Aorta/fisiologia , Pressão Sanguínea , Simulação por Computador , Humanos , Hipertrofia Ventricular Esquerda/fisiopatologia , Função Ventricular
16.
J Korean Med Sci ; 28(1): 93-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23341718

RESUMO

To quantify the reduction in workload during intra-aortic balloon pump (IABP) therapy, indirect parameters are used, such as the mean arterial pressure during diastole, product of heart rate and peak systolic pressure, and pressure-volume area. Therefore, we investigated the cardiac energy consumption during IABP therapy using a cardiac electromechanics model. We incorporated an IABP function into a previously developed electromechanical model of the ventricle with a lumped model of the circulatory system and investigated the cardiac energy consumption at different IABP inflation volumes. When the IABP was used at inflation level 5, the cardiac output and stroke volume increased 11%, the ejection fraction increased 21%, the stroke work decreased 1%, the mean arterial pressure increased 10%, and the ATP consumption decreased 12%. These results show that although the ATP consumption is decreased significantly, stroke work is decreased only slightly, which indicates that the IABP helps the failed ventricle to pump blood efficiently.


Assuntos
Trifosfato de Adenosina/metabolismo , Balão Intra-Aórtico , Modelos Teóricos , Pressão Arterial , Débito Cardíaco , Insuficiência Cardíaca/patologia , Frequência Cardíaca , Humanos , Volume Sistólico , Função Ventricular Esquerda
17.
Sci Rep ; 13(1): 14638, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670027

RESUMO

Computational fluid dynamics has been widely used to study hemodynamics, but accurately determining boundary conditions for turbulent blood flow remains challenging. This study aims to investigate the effect of patient-specific turbulence boundary conditions on the accuracy of turbulent flow simulation. Using a stenosis model with 50% severity in diameter, the post-stenosis turbulence flow region was simulated with different planes to obtain inlet boundary conditions and simulate downstream flows. The errors of simulated flow fields obtained with turbulence kinetic energy (TKE) boundary data and arbitrary turbulence intensity were compared. Additionally, the study tested various TKE data resolutions and noise levels to simulate experimental environments. The mean absolute error of velocity and TKE was investigated with various turbulence intensities and TKE mapping. While voxel size and signal-to-noise ratio of the TKE data affected the results, simulation with SNR > 5 and voxel size < 10% resulted in better accuracy than simulations with turbulence intensities. The simulation with appropriate TKE boundary data resulted in a more accurate velocity and turbulence field than those with arbitrary turbulence intensity boundary conditions. The study demonstrated the potential improvement of turbulent blood flow simulation with patient-specific turbulence boundary conditions, which can be obtained from recent measurement techniques.

18.
Front Physiol ; 14: 1123190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025386

RESUMO

Background: Field potential (FP) signals from human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) spheroid which are used for drug safety tests in the preclinical stage are different from action potential (AP) signals and require working knowledge of the multi-electrode array (MEA) system. In this study, we developed in silico three-dimensional (3-D) models of hiPSC-CM spheroids for the simulation of field potential measurement. We compared our model simulation results against in vitro experimental data under the effect of drugs E-4031 and nifedipine. Methods: In silico 3-D models of hiPSC-CM spheroids were constructed in spherical and discoidal shapes. Tetrahedral meshes were generated inside the models, and the propagation of the action potential in the model was obtained by numerically solving the monodomain reaction-diffusion equation. An electrical model of electrode was constructed and FPs were calculated using the extracellular potentials from the AP propagations. The effects of drugs were simulated by matching the simulation results with in vitro experimental data. Results: The simulated FPs from the 3-D models of hiPSC-CM spheroids exhibited highly variable shapes depending on the stimulation and measurement locations. The values of the IC50 of E-4031 and nifedipine calculated by matching the simulated FP durations with in vitro experimental data were in line with the experimentally measured ones reported in the literature. Conclusion: The 3-D in silico models of hiPSC-CM spheroids generated highly variable FPs similar to those observed in in vitro experiments. The in silico model has the potential to complement the interpretation of the FP signals obtained from in vitro experiments.

19.
J Physiol ; 590(18): 4447-63, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22674726

RESUMO

L-type Ca(2+) channels (ICaLs) are inactivated by an increase in intracellular [Ca(2+)], known as Ca(2+)-dependent inactivation (CDI). CDI is also induced by Ca(2+) released from the sarcoplasmic reticulum (SR), known as release-dependent inhibition (RDI). As both CDI and RDI occur in the junctional subsarcolemmal nanospace (JSS), we investigated which factors are involved within the JSS using isolated cardiac myocytes from the main pulmonary vein of the rabbit. Using the whole-cell patch clamp technique, RDI was readily observed with the application of a pre-pulse followed by a test pulse, during which the ICaLs exhibited a decrease in peak current amplitude and a slower inactivation. A fast acting Ca(2+) chelator, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), abolished this effect. As the time interval between the pre-pulse and test pulse increased, the ICaLs exhibited greater recovery and the RDI was relieved. Inhibition of the ryanodine receptor (RyR) or the SR Ca(2+)-ATPase (SERCA) greatly attenuated RDI and facilitated ICaL recovery. Removal of extracellular Na(+),which inhibits the Na(+)-Ca(2+) exchange (Incx), greatly enhanced RDI and slowed ICaL recovery, suggesting that Incx critically controls the [Ca(2+)] in the JSS. We incorporated the Ca(2+)-binding kinetics of the ICaL into a previously published computational model. By assuming two Ca(2+)-binding sites in the ICaL, of which one is of low-affinity with fast kinetics and the other is of high-affinity with slower kinetics, the new model was able to successfully reproduce RDI and its regulation by Incx. The model suggests that Incx accelerates Ca(2+) removal from the JSS to downregulate CDI and attenuates SR Ca(2+) refilling. The model may be useful to elucidate complex mechanisms involved in excitation­contraction coupling in myocytes.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Cálcio/fisiologia , Modelos Cardiovasculares , Miócitos Cardíacos/fisiologia , Veias Pulmonares/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Quelantes/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Técnicas In Vitro , Miócitos Cardíacos/efeitos dos fármacos , Coelhos , Retículo Sarcoplasmático/fisiologia , Trocador de Sódio e Cálcio/fisiologia
20.
Biochim Biophys Acta ; 1800(3): 282-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19914351

RESUMO

The centerpiece of the pathophysiologic mechanism of metabolic syndrome is insulin resistance. Recently, it is becoming evident that mitochondrial dysfunction is closely related to insulin resistance and metabolic syndrome. The underlying mechanism of mitochondrial dysfunction is very complex, which includes genetic factors from both nuclear and mitochondrial genome and numerous environmental factors. Several mitochondrial DNA polymorphisms are associated with the components of metabolic syndrome. Numerous chemicals and drugs may cause mitochondrial dysfunction and insulin resistance. Notably, it was recently reported that serum levels of several mitochondrial toxins, such as persistent organic pollutants are associated with metabolic syndrome, which necessitates further investigation to reveal its precise mechanism. Given that the health impact of metabolic syndrome is tremendous, it is necessary to develop therapeutic modalities to correct mitochondrial dysfunction or at least to halt its aggravation. In this regard, exercise can improve both mitochondrial function and insulin sensitivity, and some pharmaceutical agents were reported to improve mitochondrial function. However, further studies are warranted to find more effective therapeutic strategies to treat mitochondrial dysfunction. By doing so, we can also shed light on the path of research for other diseases related to mitochondrial dysfunction.


Assuntos
DNA Mitocondrial/genética , Resistência à Insulina , Síndrome Metabólica/fisiopatologia , Mitocôndrias/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Metabolismo Basal , Tamanho Corporal , Metabolismo Energético , Meio Ambiente , Exercício Físico , Humanos , Insulina/fisiologia , Mamíferos , Síndrome Metabólica/genética , Síndrome Metabólica/terapia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Biológicos , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA