Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Sci Technol ; 52(10-11): 443-51, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16459820

RESUMO

In this study, a simple dual sludge process was developed for small sewage treatment. It is a hybrid system that consists of upflow multi-layer bioreactor (UMBR) as anaerobic and anoxic reactor with suspended growth microorganisms and post aerobic biofilm reactor with inclined plates. UMBR is a multifunction reactor that acts as primary sedimentation tank, anaerobic reactor, anoxic reactor, and thickener. The sludge blanket in the UMBR is maintained at a constant level by automatic control so that clear water (30 mg-SS/L) can flow into the post aerobic biofilm reactor. It leads to improving performance of the biofilm reactor due to preventing of excess microbial attachment on the media surface and no requirment for a large clarifier caused by low solid loading. The HRT in the UMBR and the aerobic biofilm reactor were about 5.8 h and 6.4 h, respectively. The temperature in the reactor during this study varied from 12.5 degrees C to 28.3 degrees C. The results obtained from this study show that effluent concentrations of TCOD, TBOD, SS, TN, and TP were 29.7 mg/L, 6.0 mg/L, 10.3 mg/L, 12.0 mg/L, and 1.8 mg/L, which corresponded to a removal efficiency of 92.7%, 96.4%, 96.4%, 74.9%, and 76.5%, respectively. The sludge biomass index (SBI) of the excess sludge in the UMBR was about 0.55, which means that the sludge in the UMBR was sufficiently stabilized and may not require further treatment prior to disposal.


Assuntos
Reatores Biológicos , Compostos de Nitrogênio/isolamento & purificação , Compostos de Fósforo/isolamento & purificação , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Biofilmes , Biomassa , Compostos de Nitrogênio/metabolismo , Compostos de Fósforo/metabolismo , Esgotos/química , Temperatura , Fatores de Tempo
2.
J Microsc ; 205(Pt 3): 238-44, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11996187

RESUMO

The crystallographic grain orientation of ZrB2-ZrC composites manufactured using a spark plasma sintering (SPS) method, a new sintering technique in development for poorly sinterable ceramic materials, was analysed by the scanning electron microscopy-electron backscattered diffraction (SEM-EBSD) method. Their crystallographic features have been compared with those of a conventionally sintered specimen using a pressureless sintering (PLS) method. In the composite sintered by PLS, (0001) planes of ZrB2 were orientated in the direction parallel to the specimen surface (RD) but (1010) and (2110) planes randomly orientated. In the case of SPS, (0001) planes of ZrB2 were orientated normal to the specimen surface (ND) and weakly to the RD. In both cases of PLS and SPS, ZrC grains had a randomly orientated grain structure. The distribution of grain boundary misorientation of PLS and SPS-processed composites showed the same tendency that high-angle boundaries were more prevalent than low-angle boundaries. But in the case of ZrC grains in the SPS sample, the proportion of CSL boundaries with low sigma value (3, 5, 7, 9, 11) was relatively larger.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA