Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 540: 61-66, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33450481

RESUMO

Calorie restriction (CR) reportedly prevents atherosclerotic diseases. Furthermore, CR induces forkhead box protein-O1 (FOXO-1) expression in the skeletal muscle, altering the character of the skeletal muscle. We previously reported that the change in skeletal muscle character, induced by the overexpression of peroxisome proliferator-activated receptor γ coactivator-1α, suppresses atherosclerotic progression in an atherosclerotic apolipoprotein E-knockout (ApoE-KO) mouse model. Thus, we hypothesized that skeletal muscle alternation induced by FOXO-1 may also have an anti-atherosclerotic effect in ApoE-KO mice. In this study, we investigated whether skeletal muscle-specific FOXO-1 overexpression suppresses the progression of atherosclerosis in ApoE-KO mice. We generated ApoE-KO/FOXO-1 mice, in which an ApoE-KO mouse was crossbred with a mouse presenting skeletal muscle-specific FOXO-1 overexpression (FOXO-1Tg). The mice were sacrificed at 20 weeks of age, and atherosclerotic plaque area and protein expression in the plaque were measured. Additionally, we measured the tumor necrosis factor α (TNFα)- induced mRNA expression in human umbilical vein endothelial cells (HUVECs), using serum collected from the FOXO-1Tg mice. Accordingly, ApoE-KO/FOXO-1 mice showed a 65% reduced atherosclerotic plaque area when compared with the ApoE-KO mice, with concomitantly reduced vascular cell adhesion molecule-1 (VCAM-1) and macrophage infiltration. As compared to serum from wild-type mice, the serum collected from the FOXO-1Tg mice significantly suppressed the mRNA expression of VCAM-1, an atherosclerosis initiation factor, in TNFα-treated HUVECs. Therefore, these data suggest that skeletal muscle-specific FOXO-1 overexpression suppresses the progression of atherosclerosis in ApoE-KO mice. In part, the CR-induced anti-atherosclerotic effect could be attributed to FOXO-1 upregulation in the skeletal muscle.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/genética , Aterosclerose/patologia , Progressão da Doença , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Músculo Esquelético/metabolismo , Animais , Apolipoproteínas E/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
2.
Biol Pharm Bull ; 43(6): 1016-1019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32475911

RESUMO

Endurance exercise training has been shown to induce peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression in skeletal muscle. We recently reported that skeletal muscle-specific PGC-1α overexpression suppressed atherosclerosis in apolipoprotein E-knockout (ApoE-/-) mice. ß-Aminoisobutyric acid (BAIBA) is a PGC-1α-dependent myokine secreted from myocytes that affects multiple organs. We have also reported that BAIBA suppresses tumor necrosis factor-alpha-induced vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) gene expression in endothelial cells. In the present study, we hypothesized that BAIBA suppresses atherosclerosis progression, and tested that hypothesis with ApoE-/- mice. The mice were administered water containing BAIBA for 14 weeks, and were then sacrificed at 20 weeks of age. Atherosclerotic plaque area, plasma BAIBA concentration, and plasma lipoprotein profiles were assessed. Immunohistochemical analyses of the plaque were performed to assess VCAM-1 and MCP-1 protein expression levels and macrophage infiltration. The results showed that BAIBA administration decreased atherosclerosis plaque area by 30%, concomitant with the elevation of plasma BAIBA levels. On the other hand, plasma lipoprotein profiles were not changed by the administration. Immunohistochemical analyses indicated reductions in VCAM-1, MCP-1, and Mac-2 protein expression levels in the plaque. These results suggest that BAIBA administration suppresses atherosclerosis progression without changing plasma lipoprotein profiles. We propose that the mechanisms of this suppression are reductions in both VCAM-1 and MCP-1 expression as well as macrophage infiltration into the plaque.


Assuntos
Ácidos Aminoisobutíricos/uso terapêutico , Aterosclerose/tratamento farmacológico , Ácidos Aminoisobutíricos/sangue , Ácidos Aminoisobutíricos/farmacocinética , Ácidos Aminoisobutíricos/farmacologia , Animais , Valva Aórtica/efeitos dos fármacos , Valva Aórtica/patologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Quimiocina CCL2/metabolismo , Galectina 3/metabolismo , Lipídeos/sangue , Camundongos Knockout para ApoE , Molécula 1 de Adesão de Célula Vascular/metabolismo
3.
J Diabetes Investig ; 15(2): 172-176, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37920117

RESUMO

To explore the relationship between mealtime delays of up to 3 h and subsequent glucose fluctuations, healthy young adults were allocated to three delayed dinnertimes in randomized order. Participants consumed test meals for lunch and dinner. After assessing the glucose responses using intermittently scanned continuous glucose monitoring devices (isCGM), the peak glucose elevation, and incremental area under the curve (iAUC) of postprandial glucose during certain intervals increased significantly when the time between lunch and dinner was delayed by 1 h or more. Our results support the importance of improving irregular mealtime habits, such as late eating.


Assuntos
Automonitorização da Glicemia , Glicemia , Humanos , Adulto Jovem , Glucose , Refeições , Período Pós-Prandial/fisiologia , Estudos Cross-Over , Insulina
4.
J Med Invest ; 70(1.2): 226-230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37164726

RESUMO

Aneurysmal subarachnoid hemorrhage (SAH) is a serious clinical event associated with high mortality and, among survivors, serious morbidity. Maintaining the muscle volume in SAH patients is essential, as rehabilitation is often required after intensive care. In this study, we investigated whether proper nutritional administration improved clinical outcomes based on patients laboratory data and level of activities of daily living. This retrospective study was carried out on 250 consecutive SAH patients who underwent craniotomy within 72 hours of onset from February 2005 to June 2018. Finally, 75 patients with a BMI < 22 kg/m2 were included. We compared postoperative energy and protein intake in relation to measures of biochemical parameters and modified Rankin Scale at discharge. Serum Alb concentrations at 25-35 hospital days was significantly improved by postoperative energy intake of ≧25 kcal/kg and protein intake of ≧0.8 g/kg per day beginning 3 days. High serum Alb concentrations at 25-35 hospital days following the start of this intake were independent factors for good prognosis. This study suggests that the minimum postoperative nutritional intake per day for SAH patients undergoing aneurysmal clipping is 25 kcal/kg of energy and 0.8 g/kg of protein. Higher serum Alb concentrations corresponded to improved long-term functional outcome. J. Med. Invest. 70 : 226-230, February, 2023.


Assuntos
Aneurisma Intracraniano , Hemorragia Subaracnóidea , Humanos , Hemorragia Subaracnóidea/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Atividades Cotidianas , Prognóstico , Aneurisma Intracraniano/cirurgia
5.
Sci Rep ; 9(1): 4077, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858489

RESUMO

Endurance exercise training prevents atherosclerosis. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) increases myokine secretion from the skeletal muscle, and these myokines have been shown to affect the function of multiple organs. Since endurance exercise training increases PGC-1α expression in skeletal muscles, we investigated whether skeletal muscle-specific PGC-1α overexpression suppresses atherosclerosis. Apolipoprotein E-knockout (ApoE-KO)/PGC-1α mice, which overexpress PGC-1α in the skeletal muscle of ApoE-KO mice, were sacrificed, and the atherosclerotic plaque area, spontaneous activity, plasma lipid profile, and aortic gene expression were measured. Immunohistochemical analyses were also performed. The atherosclerotic lesions in ApoE-KO/PGC-1α mice were 40% smaller than those in ApoE-KO mice, concomitant with the reduction in vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) mRNA and protein levels in the aorta. Spontaneous activity and plasma lipid profiles were not changed by the overexpression of PGC-1α in the skeletal muscle. In human umbilical vein endothelial cells, Irisin and ß-aminoisobutyric acid (BAIBA), PGC-1α-dependent myokines, inhibited the tumor necrosis factor α-induced VCAM-1 gene and protein expression. BAIBA also inhibited TNFα-induced MCP-1 gene expression. These results showed that the skeletal muscle-specific overexpression of PGC-1α suppresses atherosclerosis and that PGC-1α-dependent myokines may be involved in the preventive effects observed.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/genética , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Ácidos Aminoisobutíricos/farmacologia , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/fisiopatologia , Aterosclerose/terapia , Quimiocina CCL2/genética , Modelos Animais de Doenças , Treino Aeróbico/métodos , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Condicionamento Físico Animal/fisiologia , Fator de Necrose Tumoral alfa/genética , Molécula 1 de Adesão de Célula Vascular/genética
6.
Nutrients ; 11(4)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30979047

RESUMO

Unhealthy diet promotes progression of metabolic disorders and brain dysfunction with aging. Green tea extracts (GTEs) have various beneficial effects and alleviate metabolic disorders. GTEs have neuroprotective effects in rodent models, but their effects against brain dysfunction in models of aging fed unhealthy diets are still unclear. Here, we showed that GTEs attenuate high-fat (HF) diet-induced brain dysfunction in senescence-accelerated mouse prone-8 (SAMP8), a murine model of senescence. SAMP8 mice were fed a control diet, HF diet, or HF diet with 0.5% GTEs (HFGT) for four months. The HF diet reduced memory retention and induced amyloid ß1-42 accumulation, whereas GTEs attenuated these changes. In HF diet-fed mice, lipid oxidative stress, assessed by malondialdehyde levels, was increased. The levels of proteins that promote synaptic plasticity, such as brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD95), were reduced. These alterations related to brain dysfunction were not observed in HFGT diet-fed mice. Overall, our data suggest that GTEs intake might attenuate brain dysfunction in HF diet-fed SAMP8 mice by protecting synaptic plasticity as well as via anti-oxidative effects. In conclusion, GTEs might ameliorate unhealthy diet-induced brain dysfunction that develops with aging.


Assuntos
Encefalopatias/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Fármacos Neuroprotetores , Extratos Vegetais/administração & dosagem , Chá , Envelhecimento , Peptídeos beta-Amiloides/análise , Animais , Encéfalo/patologia , Química Encefálica , Encefalopatias/etiologia , Encefalopatias/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/análise , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Proteína 4 Homóloga a Disks-Large/análise , Masculino , Memória , Camundongos , Plasticidade Neuronal , Tamanho do Órgão , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia , Sinaptofisina/análise
7.
PLoS One ; 13(4): e0195753, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29630667

RESUMO

Muscle atrophy (loss of skeletal muscle mass) causes progressive deterioration of skeletal function. Recently, excessive intake of fats was suggested to induce insulin resistance, followed by muscle atrophy. Green tea extracts (GTEs), which contain polyphenols such as epigallocatechin gallate, have beneficial effects on obesity, hyperglycemia, and insulin resistance, but their effects against muscle atrophy are still unclear. Here, we found that GTEs prevented high-fat (HF) diet-induced muscle weight loss in senescence-accelerated mouse prone-8 (SAMP8), a murine model of senescence. SAMP8 mice were fed a control diet, an HF diet, or HF with 0.5% GTEs (HFGT) diet for 4 months. The HF diet induced muscle weight loss with aging (measured as quadriceps muscle weight), whereas GTEs prevented this loss. In HF diet-fed mice, blood glucose and plasma insulin concentrations increased in comparison with the control group, and these mice had insulin resistance as determined by homeostasis model assessment of insulin resistance (HOMA-IR). In these mice, serum concentrations of leukocyte cell-derived chemotaxin 2 (LECT2), which is known to induce insulin resistance in skeletal muscle, were elevated, and insulin signaling in muscle, as determined by the phosphorylation levels of Akt and p70 S6 kinases, tended to be decreased. In HFGT diet-fed mice, these signs of insulin resistance and elevation of serum LECT2 were not observed. Although our study did not directly show the effect of serum LECT2 on muscle weight, insulin resistance examined using HOMA-IR indicated an intervention effect of serum LECT2 on muscle weight, as revealed by partial correlation analysis. Accordingly, GTEs might have beneficial effects on age-related and HF diet-induced muscle weight loss, which correlates with insulin resistance and is accompanied by a change in serum LECT2.


Assuntos
Senescência Celular/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Atrofia Muscular/prevenção & controle , Extratos Vegetais/farmacologia , Chá/química , Animais , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Atrofia Muscular/etiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA