Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(13): 5198-5206, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35728001

RESUMO

Over the past few years, many efforts have been devoted to growing single-crystal graphene due to its great potential in future applications. However, a number of issues remain for single-crystal graphene growth, such as control of nanoscale defects and the substrate-dependent nonuniformity of graphene quality. In this work, we demonstrate a possible route toward single-crystal graphene by combining aligned nucleation of graphene nanograins on Cu/Ni (111) and sequential heat treatment over pregrown graphene grains. By use of a mobile hot-wire CVD system, prealigned grains were stitched into one continuous film with up to ∼97% single-crystal domains, compared to graphene grown on polycrystalline Cu, which was predominantly high-angle tilt boundary (HATB) domains. The single-crystal-like graphene showed remarkably high thermal conductivity and carrier mobility of ∼1349 W/mK at 350 K and ∼33 600 (38 400) cm2 V-1 s-1 for electrons (holes), respectively, which indicates that the crystallinity is high due to suppression of HATB domains.

2.
Nat Commun ; 15(1): 1996, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485943

RESUMO

Thermoelectric technology has potential for converting waste heat into electricity. Although traditional thermoelectric materials exhibit extremely high thermoelectric performances, their scarcity and toxicity limit their applications. Zinc oxide (ZnO) emerges as a promising alternative owing to its high thermal stability and relatively high Seebeck coefficient, while also being earth-abundant and nontoxic. However, its high thermal conductivity (>40 W m-1K-1) remains a challenge. In this study, we use a multi-step strategy to achieve a significantly high dimensionless figure-of-merit (zT) value of approximately 0.486 at 580 K (estimated value) by interfacing graphene quantum dots with 3D nanostructured ZnO. Here, we show the fabrication of graphene quantum dots interfaced 3D ZnO, yielding the highest zT value ever reported for ZnO counterparts; specifically, our experimental results indicate that the fabricated 3D GQD@ZnO exhibited a significantly low thermal conductivity of 0.785 W m-1K-1 (estimated value) and a remarkably high Seebeck coefficient of - 556 µV K-1 at 580 K.

3.
ACS Appl Mater Interfaces ; 13(20): 24304-24313, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33983698

RESUMO

Over the years, numerous studies have attempted to develop two-dimensional (2D) materials for improving both the applicability and performance of thermoelectric devices. Among the 2D materials, graphene is one of the promising candidates for thermoelectric materials owing to its extraordinary electrical properties, flexibility, and nontoxicity. However, graphene synthesized through traditional methods suffers from a low Seebeck coefficient and high thermal conductivity, resulting in an extremely low thermoelectric figure of merit (ZT). Here, we present an atomic-scale defect engineering strategy to improve the thermoelectric properties of graphene using embedded high-angle tilt boundary (HATB) domains in graphene films. These HATB domains serve as both energy filtering sites to filter out lower-energy charge carriers and scattering sites for phonons. Compared to the conventionally grown chemical vapor deposited graphene, the graphene with HATB domains shows an improved Seebeck coefficient (50.1 vs 21.1 µV K-1) and reduced thermal conductivity (382 vs 952 W m-1K-1), resulting in a ZT value that is ∼7 times greater at 350 K. This defect engineering strategy is promising not only for graphene-based materials but also for 2D materials, in general, where further research and optimization could overcome the limitations of conventional bulk thermoelectric materials in energy-harvesting systems.

4.
Nanoscale ; 12(16): 8701-8705, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32270150

RESUMO

Understanding the mechanism of thermal energy transport in a single nanotube (NT) is essential for successfully engineering nanostructured conducting polymers to apply to thermoelectrics or flexible electronic devices. We report the characterization of the in-plane thermal energy transport in a single poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) NT via direct measurement of the in-plane thermal conductivity (κ). We also demonstrate that the in-plane κ of PEDOT:PSS NT can be tuned within the range of 0.19 to 1.92 W·m-1·K-1 merely by changing the solvent used to treat the NTs in the post-fabrication stage. The in-plane thermal energy transport in a pristine NT, with its low in-plane κ, is primarily due to phonons; in a sulfuric acid-treated NT however, significant electronic contributions lead to a high in-plane κ. The present study will contribute to understanding the mechanism of thermal energy transport in highly disordered structures, such as conducting polymers, and to designing highly efficient polymer-based devices in which in-plane κ plays a pivotal role in determining the energy conversion efficiency.

5.
Nat Commun ; 10(1): 864, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787291

RESUMO

The discovery of SnSe single crystals with record high thermoelectric efficiency along the b-axis has led to the search for ways to synthesize polycrystalline SnSe with similar efficiencies. However, due to weak texturing and difficulties in doping, such high thermoelectric efficiencies have not been realized in polycrystals or thin films. Here, we show that highly textured and hole doped SnSe thin films with thermoelectric power factors at the single crystal level can be prepared by solution process. Purification step in the synthetic process produced a SnSe-based chalcogenidometallate precursor, which decomposes to form the SnSe2 phase. We show that the strong textures of the thin films in the b-c plane originate from the transition of two dimensional SnSe2 to SnSe. This composition change-driven transition offers wide control over composition and doping of the thin films. Our optimum SnSe thin films exhibit a thermoelectric power factor of 4.27 µW cm-1 K-2.

6.
Nanoscale ; 10(13): 5985-5989, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29542777

RESUMO

Thickness effects on thermal conductivities of black phosphorus nanosheets, which are anisotropic in the zigzag and armchair planar directions, are experimentally and theoretically investigated in the thickness range of 13 to 48 nm. The thermal conductivities decrease with the thickness, decreasing from 13 to 8 W m-1 K-1 in the zigzag direction and from 10 to 6 W m-1 K-1 in the armchair direction at 300 K, respectively. The anisotropic thermal conductivities, regardless of the thickness, might result from the anisotropic phonon velocity arising from the hinge-like structure. The surface-driven suppression of the thermal conductivities at a nanometer scale is remarkable for a wide temperature range of 100 to 300 K due to phonon-boundary scattering, while the thermal conductivity becomes less dependent on the thickness at higher temperatures above 300 K, owing to the dominant phonon-phonon scattering.

7.
ACS Appl Mater Interfaces ; 10(21): 17957-17962, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29741082

RESUMO

In recent years, two-dimensional black phosphorus (BP) has seen a surge of research because of its unique optical, electronic, and chemical properties. BP has also received interest as a potential thermoelectric material because of its high Seebeck coefficient and excellent charge mobility, but further development is limited by the high cost and poor scalability of traditional BP synthesis techniques. In this work, high-quality BP is synthesized using a low-cost method and utilized in a PEDOT:PSS film to create the first ever BP composite thermoelectric material. The thermoelectric properties are found to be greatly enhanced after the BP addition, with the power factor of the film, with 2 wt % BP (36.2 µW m-1 K-2) representing a 109% improvement over the pure PEDOT:PSS film (17.3 µW m-1 K-2). A simultaneous increase of mobility and decrease of the carrier concentration is found to occur with the increasing BP wt %, which allows for both Seebeck coefficient and electrical conductivity to be increased. These results show the potential of this low-cost BP for use in energy devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA