RESUMO
BACKGROUND: A chloride test is an integral part of a basic metabolic panel that is essential for the assessment of a patient's acid-base and electrolyte status. While many methods are available commercially for the routine measurement of chloride, there is a need to address the accuracy and variability among the measurement results, especially with the prevalence of patients seeking treatment across different healthcare providers for alternative opinions. METHOD: A method based on sector field inductively coupled plasma isotope dilution mass spectrometry (SF-ICP-IDMS) was developed for the measurement of chloride in human serum. The SF-ICP-IDMS method was then used to assign the target values in the Health Sciences Authority (HSA) External Quality Assessment (EQA) Programme to evaluate the results of chloride test from participating clinical laboratories. RESULTS: The accuracy of the measurements was evaluated by comparing the results with the certified values of Electrolytes in Frozen Human Serum Certified Reference Materials (SRM 956c and SRM 956d) from the National Institute of Standards and Technology (NIST) at different chloride concentration levels. Over a five-year period from 2014-2018, the number of clinical laboratories which participated in the EQA Programme increased from 23 to 33. Comparison of robust means from the laboratories' results with our assigned target values revealed a reduction in relative deviation over time. The relationship between the deviation of each brand of clinical analysers and the chloride levels was established, where a larger deviation was uncovered at low chloride concentration. The SF-ICP-IDMS method was further demonstrated to be comparable with methods used by other metrology institutes in an international comparison organised by HSA under the auspice of the Consultative Committee for Amount of Substance - Metrology in Chemistry and Biology (CCQM). CONCLUSION: The use of metrologically traceable assigned target values enabled the study of method biasness from a small pool of dataset in each of the four brands of clinical analysers in HSA EQA Programme. This work underscores the need to improve the accuracy of chloride measurements by regular participation in an accuracy-based EQA Programme.
Assuntos
Cloretos , Laboratórios Clínicos , Eletrólitos , Humanos , Técnicas de Diluição do Indicador , Padrões de ReferênciaRESUMO
We report the Heck coupling of 2-vinyl-4,5-dicyanoimidazole (vinazene) with selected di- and trihalo aromatics in an effort to prepare linear and branched electron-accepting conjugated materials for application in organic electronics. By selecting the suitable halo-aromatic moiety, it is possible to tune the HOMO-LUMO energy levels, absorption, and emission properties for a specific application. In this regard, materials with strong photoluminescence from blue --> green --> red are reported that may have potential application in organic light-emitting diodes (OLEDs). Furthermore, derivatives with strong absorption in the visible spectrum, coupled with favorable HOMO-LUMO levels, have been used to prepare promising organic photovoltaic devices (OPVs) when combined with commercially available semiconducting donor polymers.
RESUMO
High accuracy methods were developed for the measurements of calcium, potassium, iron and magnesium in human serum using standard addition and isotope dilution mass spectrometry methods. The results were comparable to those obtained by other national metrology institutes and designated institutes as demonstrated in an inter-laboratory comparison. The methods were then adopted for the assignment of reference values in a human serum material and the uncertainties associated with the certified values were obtained by combining the uncertainty components from the characterisation, homogeneity and long-term stability of the materials. The certified values are traceable to the International System of Units and the material can be used by the clinical testing laboratories to validate their methods or as a quality control material to improve the accuracy of their measurements.
Assuntos
Cálcio/sangue , Ferro/sangue , Magnésio/sangue , Potássio/sangue , Controle de Qualidade , Humanos , Espectrometria de Massas/instrumentaçãoRESUMO
Isotope dilution mass spectrometry and standard addition techniques were developed for the analysis of four elements (Ca, As, Cd and Pb) in a mushroom powder material. Results from the validated methods were compared to those of other national metrology institutes in the CCQM-K89 intercomparisons and the results were in excellent agreement with the reference values. The same methods were then used for the assignment of reference values to a mushroom powder Certified Reference Material (CRM). The certified values obtained for Ca, As, Cd and Pb were 1.444 ± 0.099 mg/g, 5.61 ± 0.59 mg/kg, 1.191 ± 0.079 mg/kg and 5.23 ± 0.94 mg/kg, respectively. The expanded measurement uncertainties were obtained by combining the uncertainty contributions from characterization (uchar) and between-bottle homogeneity (ubb).
Assuntos
Agaricales/química , Arsênio/análise , Cádmio/análise , Cálcio/análise , Chumbo/análise , Espectrometria de Massas/métodos , Pós , Padrões de ReferênciaRESUMO
The reaction of [(eta(6)-arene)RuCl(2)](2) (arene = C(6)Me(6), 1,4-MeC(6)H(4)CHMe(2)) with a large excess of the dianion of bis(2-mercaptoethyl) sulfide, (HSCH(2)CH(2))(2)S, obtained from deprotonation of the dithiol with freshly prepared NaOMe, gives the deep red, monomeric complexes [(eta(6)-arene)Ru(eta(3)-C(4)H(8)S(3))] (arene = C(6)Me(6) (5), 1,4-MeC(6)H(4)CHMe(2) (6)) in which the dianion is bound to the metal atom through one thioether and two thiolate sulfur atoms. Complex 5 reacts with [(eta(6)-C(6)Me(6))RuCl(2)](2) (4) in a 2:1 mole ratio to give a quantitative yield of the chloride salt of a binuclear cation [((eta(6)-C(6)Me(6))Ru)(2)Cl(mu(2)-eta(2):eta(3)-C(4)H(8)S(3))](+) (7) in which the thiolate sulfur atoms of the [(eta(6)-C(6)Me(6))Ru(eta(3)-C(4)H(8)S(3))] group bridge to a (eta(6)-C(6)Me(6))RuCl unit. This compound is also obtained directly from the reaction of 4 with the dithiolate, if the Ru dimer is used in large excess. The binuclear complex [((eta(6)-C(6)Me(6))Ru)(2)(MeCN)(mu(2)-eta(2):eta(3)-C(4)H(8)S(3))](PF(6))(2).MeCN, (9)(PF(6))(2).MeCN, is obtained by treatment of (7)Cl with NH(4)PF(6) in acetonitrile. Protonation of 5 with HCl gave the mono- and diprotonated derivatives viz. [(eta(6)-C(6)Me(6))Ru(eta(3)-C(4)H(9)S(3))]Cl, (8)Cl, and [(eta(6)-C(6)Me(6))Ru(eta(3)-C(4)H(10)S(3))]Cl(2), (10)Cl(2), respectively. The reaction of 5 with methyl iodide gives both the mono- and di-S-methylated derivatives. Treatment of 5 with dibromoalkanes, Br(CH(2))(n)Br (n = 1-5), effects ring closure to give the (eta(6)-C(6)Me(6))Ru dications containing the trithia mesocyclic zS3 (z = 8-12) ligands, isolated as their PF(6) salts. The X-ray crystal structures of 5, 6, the solvates of (7)Cl and (9)(PF(6))(2), and the trithia mesocyclic Ru complexes (eta(6)-C(6)Me(6))Ru(zS3)(PF(6))(2) (z = 8-11) are reported.