Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37112398

RESUMO

Perceptual encryption (PE) hides the identifiable information of an image in such a way that its intrinsic characteristics remain intact. This recognizable perceptual quality can be used to enable computation in the encryption domain. A class of PE algorithms based on block-level processing has recently gained popularity for their ability to generate JPEG-compressible cipher images. A tradeoff in these methods, however, is between the security efficiency and compression savings due to the chosen block size. Several methods (such as the processing of each color component independently, image representation, and sub-block-level processing) have been proposed to effectively manage this tradeoff. The current study adapts these assorted practices into a uniform framework to provide a fair comparison of their results. Specifically, their compression quality is investigated under various design parameters, such as the choice of colorspace, image representation, chroma subsampling, quantization tables, and block size. Our analyses have shown that at best the PE methods introduce a decrease of 6% and 3% in the JPEG compression performance with and without chroma subsampling, respectively. Additionally, their encryption quality is quantified in terms of several statistical analyses. The simulation results show that block-based PE methods exhibit several favorable properties for the encryption-then-compression schemes. Nonetheless, to avoid any pitfalls, their principal design should be carefully considered in the context of the applications for which we outlined possible future research directions.

2.
Sensors (Basel) ; 22(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36298425

RESUMO

Perceptual encryption (PE) of images protects visual information while retaining the intrinsic properties necessary to enable computation in the encryption domain. Block-based PE produces JPEG-compliant images with almost the same compression savings as that of the plain images. The methods represent an input color image as a pseudo grayscale image to benefit from a smaller block size. However, such representation degrades image quality and compression savings, and removes color information, which limits their applications. To solve these limitations, we proposed inter and intra block processing for compressible PE methods (IIB-CPE). The method represents an input as a color image and performs block-level inter processing and sub-block-level intra processing on it. The intra block processing results in an inside-out geometric transformation that disrupts the symmetry of an entire block thus achieves visual encryption of local details while preserving the global contents of an image. The intra block-level processing allows the use of a smaller block size, which improves encryption efficiency without compromising compression performance. Our analyses showed that IIB-CPE offers 15% bitrate savings with better image quality than the existing PE methods. In addition, we extended the scope of applications of the proposed IIB-CPE to the privacy-preserving deep learning (PPDL) domain.


Assuntos
Compressão de Dados , Aprendizado Profundo , Privacidade , Segurança Computacional , Algoritmos , Compressão de Dados/métodos
3.
Sensors (Basel) ; 20(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092991

RESUMO

In the last few years, multicast device-to-device (D2D) cellular networks has become a highly attractive area of research. However, a particularly challenging class of issues in this area is data traffic, which increases due to increase in video and audio streaming applications. Therefore, there is need for smart spectrum management policies. In this paper, we consider a fractional frequency reuse (FFR) technique which divides the whole spectrum into multiple sections and allows reusing of spectrum resources between the conventional cellular users and multicast D2D users in a non-orthogonal scenario. Since conventional cellular users and multicast D2D users shared same resources simultaneously, they generate severe data traffic and high communication overhead. To overcome these issues, in this paper we propose Lagrange relaxation technique to solve the non-convex problem and combinatorial auction-based matching algorithm to select the most desirable resource reuse partners by fulfilling the quality of service (QoS) requirements for both the conventional cellular users and multicast D2D users. Then, we formulate an optimization problem to maximize the overall system performance with least computational complexity. We demonstrate that our method can exploit a higher data rate, spectrum efficiency, traffic offload rate, coverage probability, and lower computational complexity.

4.
Sensors (Basel) ; 19(5)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823490

RESUMO

Achieving high source location privacy is critical when Wireless Sensor Networks (WSNs) are used in sensitive applications such as in asset or battlefield monitoring. Due to the sensitivity of information in these applications, it is important to ensure the flow of data between sensor nodes is secure and it does not expose any information about the monitored assets to an adversary. This paper proposes a routing scheme with stronger source location privacy than the privacy of traditional routing schemes. The paper addresses some limitations of four existing schemes by providing highly random routing paths between the source nodes and sink node. The scheme randomly sends packet to the sink node through tactically positioned proxy nodes to guarantee the routes are highly befuddling to the adversary. To achieve high privacy, the proposed scheme uses a randomizing factor to generate a new random route for every successive packet. Simulation results demonstrate that the proposed scheme provides longer safety period and stronger privacy to outperform other schemes. Furthermore the scheme provides stronger privacy against both, patient and cautious adversary models.

5.
Sensors (Basel) ; 19(5)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823500

RESUMO

In wireless sensor networks, clustering routing algorithms have been widely used owing to their high energy-efficiency and scalability. In clustering schemes, the nodes are organized in the form of clusters, and each cluster is governed by a cluster head. Once the cluster heads are selected, they form a backbone network to periodically collect, aggregate, and forward data to the base station using minimum energy (cost) routing. This approach significantly improves the network lifetime. Therefore, a new cluster head selection method that uses a weighted sum method to calculate the weight of each node in the cluster and compare it with the standard weight of that particular cluster is proposed in this paper. The node with a weight closest to the standard cluster weight becomes the cluster head. This technique balances the load distribution and selects the nodes with highest residual energy in the network. Additionally, a data routing scheme is proposed to determine an energy-efficient path from the source to the destination node. This algorithm assigns a weight function to each link on the basis of a fuzzy membership function and intra-cluster communication cost within a cluster. As a result, a minimum weight path is selected using Dijkstra's algorithm that improves the energy efficiency of the overall system. The experimental results show that the proposed algorithm shows better performance than some existing representative methods in the aspects of energy consumption, network lifetime, and system throughput.

6.
Sensors (Basel) ; 19(2)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634647

RESUMO

Device-to-device (D2D) communications can be adopted as a promising solution to attain high quality of service (QoS) for a network. However, D2D communications generates harmful interference when available resources are shared with traditional cellular users (CUs). In this paper, network architecture for the uplink resource management issue for D2D communications underlaying uplink cellular networks is proposed. We develop a fractional frequency reuse (FFR) technique to mitigate interference induced by D2D pairs (DPs) to CUs and mutual interference among DPs in a cell. Then, we formulate a sum throughput optimization problem to achieve the QoS requirements of the system. However, the computational complexity of the optimization problem is very high due to the exhaustive search for a global optimal solution. In order to reduce the complexity, we propose a greedy heuristic search algorithm for D2D communications so as to find a sub-optimal solution. Moreover, a binary power control scheme is proposed to enhance the system throughput by reducing overall interference. The performance of our proposed scheme is analyzed through extensive numerical analysis using Monte Carlo simulation. The results demonstrate that our proposed scheme provides significant improvement in system throughput with the lowest computational complexity.

7.
Sensors (Basel) ; 18(7)2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30011958

RESUMO

Wireless sensor networks (WSNs) are deployed in sensitive applications, such as in military and asset monitoring. In these applications, it is important to ensure good source location privacy. This is owing to the open nature of WSNs and the easiness of an adversary to eavesdrop on sensor communication and back trace the location of the source node. This paper proposes a scheme to preserve the source location privacy based on random routing techniques. To achieve high privacy, packets are randomly routed from the source to the sink node through strategically positioned mediate or diversion nodes. The random selection of mediate or diversion nodes is location-based. Depending on the location of the source node, packets are forwarded through different regions of the network. The proposed scheme guarantees that successive packets are routed through very different routing paths and adversaries find it confusing to back trace them to the source node location. Simulation results demonstrate that the proposed scheme effectively confuses the adversary and provides higher source location privacy to outperform other routing-based source location privacy schemes.

8.
Sensors (Basel) ; 17(3)2017 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-28264455

RESUMO

Ubiquitous healthcare is a promising technology that has attracted significant attention in recent years; this has led to the realization of wireless body area networks (WBANs). For designing a robust WBAN system, the WBAN has to solve the drawbacks of wireless technology. Also, a WBAN has to support immediate, reliable data transmission for medical services during emergencies. Hence, this study proposes a new MAC superframe structure that can handle emergencies by delivering strongly correlated regular data to a caretaker, within a certain time threshold. Simulation results demonstrate that the proposed MAC protocol achieves low latency and high throughput.

9.
Biomed Opt Express ; 11(3): 1501-1516, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32206425

RESUMO

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) beating can be efficiently characterized by time-lapse quantitative phase imaging (QPIs) obtained by digital holographic microscopy. Particularly, the CM's nucleus section can precisely reflect the associated rhythmic beating pattern of the CM suitable for subsequent beating pattern characterization. In this paper, we describe an automated method to characterize single CMs by nucleus extraction from QPIs and subsequent beating pattern reconstruction and quantification. However, accurate CM's nucleus extraction from the QPIs is a challenging task due to the variations in shape, size, orientation, and lack of special geometry. To this end, we propose a novel fully convolutional neural network (FCN)-based network architecture for accurate CM's nucleus extraction using pixel classification technique and subsequent beating pattern characterization. Our experimental results show that the beating profile of multiple extracted single CMs is less noisy and more informative compared to the whole image slide. Applying this method allows CM characterization at the single-cell level. Consequently, several single CMs are extracted from the whole slide QPIs and multiple parameters regarding their beating profile of each isolated CM are efficiently measured.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA